Metamath Proof Explorer


Theorem absnw

Description: Replace ax-10 , ax-11 , ax-12 in absn with a substitution hypothesis. (Contributed by SN, 27-May-2025)

Ref Expression
Hypothesis absnw.y ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion absnw ( { 𝑥𝜑 } = { 𝑌 } ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 absnw.y ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 df-sn { 𝑌 } = { 𝑥𝑥 = 𝑌 }
3 2 eqeq2i ( { 𝑥𝜑 } = { 𝑌 } ↔ { 𝑥𝜑 } = { 𝑥𝑥 = 𝑌 } )
4 eqeq1 ( 𝑥 = 𝑦 → ( 𝑥 = 𝑌𝑦 = 𝑌 ) )
5 1 4 abbibw ( { 𝑥𝜑 } = { 𝑥𝑥 = 𝑌 } ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑌 ) )
6 3 5 bitri ( { 𝑥𝜑 } = { 𝑌 } ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑌 ) )