| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abbibw.ph | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 2 |  | abbibw.ps | ⊢ ( 𝑥  =  𝑦  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 3 |  | dfcleq | ⊢ ( { 𝑥  ∣  𝜑 }  =  { 𝑥  ∣  𝜓 }  ↔  ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  𝑦  ∈  { 𝑥  ∣  𝜓 } ) ) | 
						
							| 4 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 5 | 4 1 | elab | ⊢ ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  𝜃 ) | 
						
							| 6 | 4 2 | elab | ⊢ ( 𝑦  ∈  { 𝑥  ∣  𝜓 }  ↔  𝜒 ) | 
						
							| 7 | 5 6 | bibi12i | ⊢ ( ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  𝑦  ∈  { 𝑥  ∣  𝜓 } )  ↔  ( 𝜃  ↔  𝜒 ) ) | 
						
							| 8 | 7 | albii | ⊢ ( ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  𝑦  ∈  { 𝑥  ∣  𝜓 } )  ↔  ∀ 𝑦 ( 𝜃  ↔  𝜒 ) ) | 
						
							| 9 | 1 2 | bibi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  ↔  𝜓 )  ↔  ( 𝜃  ↔  𝜒 ) ) ) | 
						
							| 10 | 9 | bicomd | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜃  ↔  𝜒 )  ↔  ( 𝜑  ↔  𝜓 ) ) ) | 
						
							| 11 | 10 | equcoms | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝜃  ↔  𝜒 )  ↔  ( 𝜑  ↔  𝜓 ) ) ) | 
						
							| 12 | 11 | cbvalvw | ⊢ ( ∀ 𝑦 ( 𝜃  ↔  𝜒 )  ↔  ∀ 𝑥 ( 𝜑  ↔  𝜓 ) ) | 
						
							| 13 | 3 8 12 | 3bitri | ⊢ ( { 𝑥  ∣  𝜑 }  =  { 𝑥  ∣  𝜓 }  ↔  ∀ 𝑥 ( 𝜑  ↔  𝜓 ) ) |