| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abbibw.ph |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜃 ) ) |
| 2 |
|
abbibw.ps |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) |
| 3 |
|
dfcleq |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ 𝜓 } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ) |
| 4 |
|
vex |
⊢ 𝑦 ∈ V |
| 5 |
4 1
|
elab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜃 ) |
| 6 |
4 2
|
elab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜒 ) |
| 7 |
5 6
|
bibi12i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ↔ ( 𝜃 ↔ 𝜒 ) ) |
| 8 |
7
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ↔ ∀ 𝑦 ( 𝜃 ↔ 𝜒 ) ) |
| 9 |
1 2
|
bibi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜃 ↔ 𝜒 ) ) ) |
| 10 |
9
|
bicomd |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜃 ↔ 𝜒 ) ↔ ( 𝜑 ↔ 𝜓 ) ) ) |
| 11 |
10
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( ( 𝜃 ↔ 𝜒 ) ↔ ( 𝜑 ↔ 𝜓 ) ) ) |
| 12 |
11
|
cbvalvw |
⊢ ( ∀ 𝑦 ( 𝜃 ↔ 𝜒 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) ) |
| 13 |
3 8 12
|
3bitri |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ 𝜓 } ↔ ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) ) |