Metamath Proof Explorer


Theorem abbibw

Description: Replace ax-10 , ax-11 , ax-12 in abbib with substitution hypotheses. (Contributed by SN, 27-May-2025)

Ref Expression
Hypotheses abbibw.ph ( 𝑥 = 𝑦 → ( 𝜑𝜃 ) )
abbibw.ps ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) )
Assertion abbibw ( { 𝑥𝜑 } = { 𝑥𝜓 } ↔ ∀ 𝑥 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 abbibw.ph ( 𝑥 = 𝑦 → ( 𝜑𝜃 ) )
2 abbibw.ps ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) )
3 dfcleq ( { 𝑥𝜑 } = { 𝑥𝜓 } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝑦 ∈ { 𝑥𝜓 } ) )
4 vex 𝑦 ∈ V
5 4 1 elab ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝜃 )
6 4 2 elab ( 𝑦 ∈ { 𝑥𝜓 } ↔ 𝜒 )
7 5 6 bibi12i ( ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝑦 ∈ { 𝑥𝜓 } ) ↔ ( 𝜃𝜒 ) )
8 7 albii ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝑦 ∈ { 𝑥𝜓 } ) ↔ ∀ 𝑦 ( 𝜃𝜒 ) )
9 1 2 bibi12d ( 𝑥 = 𝑦 → ( ( 𝜑𝜓 ) ↔ ( 𝜃𝜒 ) ) )
10 9 bicomd ( 𝑥 = 𝑦 → ( ( 𝜃𝜒 ) ↔ ( 𝜑𝜓 ) ) )
11 10 equcoms ( 𝑦 = 𝑥 → ( ( 𝜃𝜒 ) ↔ ( 𝜑𝜓 ) ) )
12 11 cbvalvw ( ∀ 𝑦 ( 𝜃𝜒 ) ↔ ∀ 𝑥 ( 𝜑𝜓 ) )
13 3 8 12 3bitri ( { 𝑥𝜑 } = { 𝑥𝜓 } ↔ ∀ 𝑥 ( 𝜑𝜓 ) )