Step |
Hyp |
Ref |
Expression |
1 |
|
abbibw.ph |
|- ( x = y -> ( ph <-> th ) ) |
2 |
|
abbibw.ps |
|- ( x = y -> ( ps <-> ch ) ) |
3 |
|
dfcleq |
|- ( { x | ph } = { x | ps } <-> A. y ( y e. { x | ph } <-> y e. { x | ps } ) ) |
4 |
|
vex |
|- y e. _V |
5 |
4 1
|
elab |
|- ( y e. { x | ph } <-> th ) |
6 |
4 2
|
elab |
|- ( y e. { x | ps } <-> ch ) |
7 |
5 6
|
bibi12i |
|- ( ( y e. { x | ph } <-> y e. { x | ps } ) <-> ( th <-> ch ) ) |
8 |
7
|
albii |
|- ( A. y ( y e. { x | ph } <-> y e. { x | ps } ) <-> A. y ( th <-> ch ) ) |
9 |
1 2
|
bibi12d |
|- ( x = y -> ( ( ph <-> ps ) <-> ( th <-> ch ) ) ) |
10 |
9
|
bicomd |
|- ( x = y -> ( ( th <-> ch ) <-> ( ph <-> ps ) ) ) |
11 |
10
|
equcoms |
|- ( y = x -> ( ( th <-> ch ) <-> ( ph <-> ps ) ) ) |
12 |
11
|
cbvalvw |
|- ( A. y ( th <-> ch ) <-> A. x ( ph <-> ps ) ) |
13 |
3 8 12
|
3bitri |
|- ( { x | ph } = { x | ps } <-> A. x ( ph <-> ps ) ) |