Metamath Proof Explorer


Theorem abbibw

Description: Replace ax-10 , ax-11 , ax-12 in abbib with substitution hypotheses. (Contributed by SN, 27-May-2025)

Ref Expression
Hypotheses abbibw.ph
|- ( x = y -> ( ph <-> th ) )
abbibw.ps
|- ( x = y -> ( ps <-> ch ) )
Assertion abbibw
|- ( { x | ph } = { x | ps } <-> A. x ( ph <-> ps ) )

Proof

Step Hyp Ref Expression
1 abbibw.ph
 |-  ( x = y -> ( ph <-> th ) )
2 abbibw.ps
 |-  ( x = y -> ( ps <-> ch ) )
3 dfcleq
 |-  ( { x | ph } = { x | ps } <-> A. y ( y e. { x | ph } <-> y e. { x | ps } ) )
4 vex
 |-  y e. _V
5 4 1 elab
 |-  ( y e. { x | ph } <-> th )
6 4 2 elab
 |-  ( y e. { x | ps } <-> ch )
7 5 6 bibi12i
 |-  ( ( y e. { x | ph } <-> y e. { x | ps } ) <-> ( th <-> ch ) )
8 7 albii
 |-  ( A. y ( y e. { x | ph } <-> y e. { x | ps } ) <-> A. y ( th <-> ch ) )
9 1 2 bibi12d
 |-  ( x = y -> ( ( ph <-> ps ) <-> ( th <-> ch ) ) )
10 9 bicomd
 |-  ( x = y -> ( ( th <-> ch ) <-> ( ph <-> ps ) ) )
11 10 equcoms
 |-  ( y = x -> ( ( th <-> ch ) <-> ( ph <-> ps ) ) )
12 11 cbvalvw
 |-  ( A. y ( th <-> ch ) <-> A. x ( ph <-> ps ) )
13 3 8 12 3bitri
 |-  ( { x | ph } = { x | ps } <-> A. x ( ph <-> ps ) )