| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1varpw.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
| 2 |
|
evls1varpw.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
| 3 |
|
evls1varpw.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
| 4 |
|
evls1varpw.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) |
| 5 |
|
evls1varpw.x |
⊢ 𝑋 = ( var1 ‘ 𝑈 ) |
| 6 |
|
evls1varpw.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 7 |
|
evls1varpw.e |
⊢ ↑ = ( .g ‘ 𝐺 ) |
| 8 |
|
evls1varpw.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 9 |
|
evls1varpw.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 10 |
|
evls1varpw.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 12 |
2
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
| 13 |
5 3 11
|
vr1cl |
⊢ ( 𝑈 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 14 |
9 12 13
|
3syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 15 |
1 2 3 4 6 11 7 8 9 10 14
|
evls1pw |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐵 ) ) ) ( 𝑄 ‘ 𝑋 ) ) ) |