Step |
Hyp |
Ref |
Expression |
1 |
|
df-5 |
⊢ 5 = ( 4 + 1 ) |
2 |
1
|
fveq2i |
⊢ ( ! ‘ 5 ) = ( ! ‘ ( 4 + 1 ) ) |
3 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
4 |
|
facp1 |
⊢ ( 4 ∈ ℕ0 → ( ! ‘ ( 4 + 1 ) ) = ( ( ! ‘ 4 ) · ( 4 + 1 ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( ! ‘ ( 4 + 1 ) ) = ( ( ! ‘ 4 ) · ( 4 + 1 ) ) |
6 |
2 5
|
eqtri |
⊢ ( ! ‘ 5 ) = ( ( ! ‘ 4 ) · ( 4 + 1 ) ) |
7 |
|
fac4 |
⊢ ( ! ‘ 4 ) = ; 2 4 |
8 |
|
4p1e5 |
⊢ ( 4 + 1 ) = 5 |
9 |
7 8
|
oveq12i |
⊢ ( ( ! ‘ 4 ) · ( 4 + 1 ) ) = ( ; 2 4 · 5 ) |
10 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
11 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
12 |
|
eqid |
⊢ ; 2 4 = ; 2 4 |
13 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
14 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
15 |
|
5cn |
⊢ 5 ∈ ℂ |
16 |
|
2cn |
⊢ 2 ∈ ℂ |
17 |
|
5t2e10 |
⊢ ( 5 · 2 ) = ; 1 0 |
18 |
15 16 17
|
mulcomli |
⊢ ( 2 · 5 ) = ; 1 0 |
19 |
16
|
addlidi |
⊢ ( 0 + 2 ) = 2 |
20 |
14 13 11 18 19
|
decaddi |
⊢ ( ( 2 · 5 ) + 2 ) = ; 1 2 |
21 |
|
4cn |
⊢ 4 ∈ ℂ |
22 |
|
5t4e20 |
⊢ ( 5 · 4 ) = ; 2 0 |
23 |
15 21 22
|
mulcomli |
⊢ ( 4 · 5 ) = ; 2 0 |
24 |
10 11 3 12 13 11 20 23
|
decmul1c |
⊢ ( ; 2 4 · 5 ) = ; ; 1 2 0 |
25 |
9 24
|
eqtri |
⊢ ( ( ! ‘ 4 ) · ( 4 + 1 ) ) = ; ; 1 2 0 |
26 |
6 25
|
eqtri |
⊢ ( ! ‘ 5 ) = ; ; 1 2 0 |