| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-5 |  |-  5 = ( 4 + 1 ) | 
						
							| 2 | 1 | fveq2i |  |-  ( ! ` 5 ) = ( ! ` ( 4 + 1 ) ) | 
						
							| 3 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 4 |  | facp1 |  |-  ( 4 e. NN0 -> ( ! ` ( 4 + 1 ) ) = ( ( ! ` 4 ) x. ( 4 + 1 ) ) ) | 
						
							| 5 | 3 4 | ax-mp |  |-  ( ! ` ( 4 + 1 ) ) = ( ( ! ` 4 ) x. ( 4 + 1 ) ) | 
						
							| 6 | 2 5 | eqtri |  |-  ( ! ` 5 ) = ( ( ! ` 4 ) x. ( 4 + 1 ) ) | 
						
							| 7 |  | fac4 |  |-  ( ! ` 4 ) = ; 2 4 | 
						
							| 8 |  | 4p1e5 |  |-  ( 4 + 1 ) = 5 | 
						
							| 9 | 7 8 | oveq12i |  |-  ( ( ! ` 4 ) x. ( 4 + 1 ) ) = ( ; 2 4 x. 5 ) | 
						
							| 10 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 11 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 12 |  | eqid |  |-  ; 2 4 = ; 2 4 | 
						
							| 13 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 14 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 15 |  | 5cn |  |-  5 e. CC | 
						
							| 16 |  | 2cn |  |-  2 e. CC | 
						
							| 17 |  | 5t2e10 |  |-  ( 5 x. 2 ) = ; 1 0 | 
						
							| 18 | 15 16 17 | mulcomli |  |-  ( 2 x. 5 ) = ; 1 0 | 
						
							| 19 | 16 | addlidi |  |-  ( 0 + 2 ) = 2 | 
						
							| 20 | 14 13 11 18 19 | decaddi |  |-  ( ( 2 x. 5 ) + 2 ) = ; 1 2 | 
						
							| 21 |  | 4cn |  |-  4 e. CC | 
						
							| 22 |  | 5t4e20 |  |-  ( 5 x. 4 ) = ; 2 0 | 
						
							| 23 | 15 21 22 | mulcomli |  |-  ( 4 x. 5 ) = ; 2 0 | 
						
							| 24 | 10 11 3 12 13 11 20 23 | decmul1c |  |-  ( ; 2 4 x. 5 ) = ; ; 1 2 0 | 
						
							| 25 | 9 24 | eqtri |  |-  ( ( ! ` 4 ) x. ( 4 + 1 ) ) = ; ; 1 2 0 | 
						
							| 26 | 6 25 | eqtri |  |-  ( ! ` 5 ) = ; ; 1 2 0 |