| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elss2prb | ⊢ ( 𝑝  ∈  { 𝑒  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑒 )  =  2 }  ↔  ∃ 𝑣  ∈  𝑉 ∃ 𝑤  ∈  𝑉 ( 𝑣  ≠  𝑤  ∧  𝑝  =  { 𝑣 ,  𝑤 } ) ) | 
						
							| 2 |  | eleq1 | ⊢ ( 𝑝  =  { 𝑣 ,  𝑤 }  →  ( 𝑝  ∈  𝑋  ↔  { 𝑣 ,  𝑤 }  ∈  𝑋 ) ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝑣  ≠  𝑤  ∧  𝑝  =  { 𝑣 ,  𝑤 } )  →  ( 𝑝  ∈  𝑋  ↔  { 𝑣 ,  𝑤 }  ∈  𝑋 ) ) | 
						
							| 4 | 3 | biimpcd | ⊢ ( 𝑝  ∈  𝑋  →  ( ( 𝑣  ≠  𝑤  ∧  𝑝  =  { 𝑣 ,  𝑤 } )  →  { 𝑣 ,  𝑤 }  ∈  𝑋 ) ) | 
						
							| 5 | 4 | reximdv | ⊢ ( 𝑝  ∈  𝑋  →  ( ∃ 𝑤  ∈  𝑉 ( 𝑣  ≠  𝑤  ∧  𝑝  =  { 𝑣 ,  𝑤 } )  →  ∃ 𝑤  ∈  𝑉 { 𝑣 ,  𝑤 }  ∈  𝑋 ) ) | 
						
							| 6 | 5 | reximdv | ⊢ ( 𝑝  ∈  𝑋  →  ( ∃ 𝑣  ∈  𝑉 ∃ 𝑤  ∈  𝑉 ( 𝑣  ≠  𝑤  ∧  𝑝  =  { 𝑣 ,  𝑤 } )  →  ∃ 𝑣  ∈  𝑉 ∃ 𝑤  ∈  𝑉 { 𝑣 ,  𝑤 }  ∈  𝑋 ) ) | 
						
							| 7 | 6 | com12 | ⊢ ( ∃ 𝑣  ∈  𝑉 ∃ 𝑤  ∈  𝑉 ( 𝑣  ≠  𝑤  ∧  𝑝  =  { 𝑣 ,  𝑤 } )  →  ( 𝑝  ∈  𝑋  →  ∃ 𝑣  ∈  𝑉 ∃ 𝑤  ∈  𝑉 { 𝑣 ,  𝑤 }  ∈  𝑋 ) ) | 
						
							| 8 | 1 7 | sylbi | ⊢ ( 𝑝  ∈  { 𝑒  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑒 )  =  2 }  →  ( 𝑝  ∈  𝑋  →  ∃ 𝑣  ∈  𝑉 ∃ 𝑤  ∈  𝑉 { 𝑣 ,  𝑤 }  ∈  𝑋 ) ) | 
						
							| 9 | 8 | rexlimiv | ⊢ ( ∃ 𝑝  ∈  { 𝑒  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑒 )  =  2 } 𝑝  ∈  𝑋  →  ∃ 𝑣  ∈  𝑉 ∃ 𝑤  ∈  𝑉 { 𝑣 ,  𝑤 }  ∈  𝑋 ) |