| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveqeq2 |
⊢ ( 𝑧 = 𝑃 → ( ( ♯ ‘ 𝑧 ) = 2 ↔ ( ♯ ‘ 𝑃 ) = 2 ) ) |
| 2 |
1
|
elrab |
⊢ ( 𝑃 ∈ { 𝑧 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑧 ) = 2 } ↔ ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) ) |
| 3 |
|
hash2prb |
⊢ ( 𝑃 ∈ 𝒫 𝑉 → ( ( ♯ ‘ 𝑃 ) = 2 ↔ ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) |
| 4 |
|
elpwi |
⊢ ( 𝑃 ∈ 𝒫 𝑉 → 𝑃 ⊆ 𝑉 ) |
| 5 |
|
ssrexv |
⊢ ( 𝑃 ⊆ 𝑉 → ( ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) |
| 6 |
4 5
|
syl |
⊢ ( 𝑃 ∈ 𝒫 𝑉 → ( ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) |
| 7 |
|
ssrexv |
⊢ ( 𝑃 ⊆ 𝑉 → ( ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) |
| 8 |
4 7
|
syl |
⊢ ( 𝑃 ∈ 𝒫 𝑉 → ( ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) |
| 9 |
8
|
reximdv |
⊢ ( 𝑃 ∈ 𝒫 𝑉 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) |
| 10 |
6 9
|
syld |
⊢ ( 𝑃 ∈ 𝒫 𝑉 → ( ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) |
| 11 |
3 10
|
sylbid |
⊢ ( 𝑃 ∈ 𝒫 𝑉 → ( ( ♯ ‘ 𝑃 ) = 2 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) |
| 12 |
11
|
imp |
⊢ ( ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) |
| 13 |
|
prelpwi |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → { 𝑥 , 𝑦 } ∈ 𝒫 𝑉 ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) → { 𝑥 , 𝑦 } ∈ 𝒫 𝑉 ) |
| 15 |
|
eleq1 |
⊢ ( 𝑃 = { 𝑥 , 𝑦 } → ( 𝑃 ∈ 𝒫 𝑉 ↔ { 𝑥 , 𝑦 } ∈ 𝒫 𝑉 ) ) |
| 16 |
15
|
ad2antll |
⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) → ( 𝑃 ∈ 𝒫 𝑉 ↔ { 𝑥 , 𝑦 } ∈ 𝒫 𝑉 ) ) |
| 17 |
14 16
|
mpbird |
⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) → 𝑃 ∈ 𝒫 𝑉 ) |
| 18 |
|
fveq2 |
⊢ ( 𝑃 = { 𝑥 , 𝑦 } → ( ♯ ‘ 𝑃 ) = ( ♯ ‘ { 𝑥 , 𝑦 } ) ) |
| 19 |
18
|
ad2antll |
⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) → ( ♯ ‘ 𝑃 ) = ( ♯ ‘ { 𝑥 , 𝑦 } ) ) |
| 20 |
|
hashprg |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ≠ 𝑦 ↔ ( ♯ ‘ { 𝑥 , 𝑦 } ) = 2 ) ) |
| 21 |
20
|
biimpcd |
⊢ ( 𝑥 ≠ 𝑦 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ♯ ‘ { 𝑥 , 𝑦 } ) = 2 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ♯ ‘ { 𝑥 , 𝑦 } ) = 2 ) ) |
| 23 |
22
|
impcom |
⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) → ( ♯ ‘ { 𝑥 , 𝑦 } ) = 2 ) |
| 24 |
19 23
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) → ( ♯ ‘ 𝑃 ) = 2 ) |
| 25 |
17 24
|
jca |
⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) → ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) ) |
| 26 |
25
|
ex |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) ) ) |
| 27 |
26
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) ) |
| 28 |
12 27
|
impbii |
⊢ ( ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) ↔ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) |
| 29 |
2 28
|
bitri |
⊢ ( 𝑃 ∈ { 𝑧 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑧 ) = 2 } ↔ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) |