Description: An element of the set of subsets with two elements is a proper unordered pair. (Contributed by AV, 1-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | elss2prb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 | |
|
2 | 1 | elrab | |
3 | hash2prb | |
|
4 | elpwi | |
|
5 | ssrexv | |
|
6 | 4 5 | syl | |
7 | ssrexv | |
|
8 | 4 7 | syl | |
9 | 8 | reximdv | |
10 | 6 9 | syld | |
11 | 3 10 | sylbid | |
12 | 11 | imp | |
13 | prelpwi | |
|
14 | 13 | adantr | |
15 | eleq1 | |
|
16 | 15 | ad2antll | |
17 | 14 16 | mpbird | |
18 | fveq2 | |
|
19 | 18 | ad2antll | |
20 | hashprg | |
|
21 | 20 | biimpcd | |
22 | 21 | adantr | |
23 | 22 | impcom | |
24 | 19 23 | eqtrd | |
25 | 17 24 | jca | |
26 | 25 | ex | |
27 | 26 | rexlimivv | |
28 | 12 27 | impbii | |
29 | 2 28 | bitri | |