Metamath Proof Explorer


Theorem elss2prb

Description: An element of the set of subsets with two elements is a proper unordered pair. (Contributed by AV, 1-Nov-2020)

Ref Expression
Assertion elss2prb Pz𝒫V|z=2xVyVxyP=xy

Proof

Step Hyp Ref Expression
1 fveqeq2 z=Pz=2P=2
2 1 elrab Pz𝒫V|z=2P𝒫VP=2
3 hash2prb P𝒫VP=2xPyPxyP=xy
4 elpwi P𝒫VPV
5 ssrexv PVxPyPxyP=xyxVyPxyP=xy
6 4 5 syl P𝒫VxPyPxyP=xyxVyPxyP=xy
7 ssrexv PVyPxyP=xyyVxyP=xy
8 4 7 syl P𝒫VyPxyP=xyyVxyP=xy
9 8 reximdv P𝒫VxVyPxyP=xyxVyVxyP=xy
10 6 9 syld P𝒫VxPyPxyP=xyxVyVxyP=xy
11 3 10 sylbid P𝒫VP=2xVyVxyP=xy
12 11 imp P𝒫VP=2xVyVxyP=xy
13 prelpwi xVyVxy𝒫V
14 13 adantr xVyVxyP=xyxy𝒫V
15 eleq1 P=xyP𝒫Vxy𝒫V
16 15 ad2antll xVyVxyP=xyP𝒫Vxy𝒫V
17 14 16 mpbird xVyVxyP=xyP𝒫V
18 fveq2 P=xyP=xy
19 18 ad2antll xVyVxyP=xyP=xy
20 hashprg xVyVxyxy=2
21 20 biimpcd xyxVyVxy=2
22 21 adantr xyP=xyxVyVxy=2
23 22 impcom xVyVxyP=xyxy=2
24 19 23 eqtrd xVyVxyP=xyP=2
25 17 24 jca xVyVxyP=xyP𝒫VP=2
26 25 ex xVyVxyP=xyP𝒫VP=2
27 26 rexlimivv xVyVxyP=xyP𝒫VP=2
28 12 27 impbii P𝒫VP=2xVyVxyP=xy
29 2 28 bitri Pz𝒫V|z=2xVyVxyP=xy