| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-f1 | 
							⊢ ( 𝐹 : 𝐶 –1-1→ 𝐷  ↔  ( 𝐹 : 𝐶 ⟶ 𝐷  ∧  Fun  ◡ 𝐹 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							df-f1 | 
							⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐺 : 𝐴 ⟶ 𝐵  ∧  Fun  ◡ 𝐺 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ffun | 
							⊢ ( 𝐺 : 𝐴 ⟶ 𝐵  →  Fun  𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							fcof | 
							⊢ ( ( 𝐹 : 𝐶 ⟶ 𝐷  ∧  Fun  𝐺 )  →  ( 𝐹  ∘  𝐺 ) : ( ◡ 𝐺  “  𝐶 ) ⟶ 𝐷 )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylan2 | 
							⊢ ( ( 𝐹 : 𝐶 ⟶ 𝐷  ∧  𝐺 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  𝐺 ) : ( ◡ 𝐺  “  𝐶 ) ⟶ 𝐷 )  | 
						
						
							| 6 | 
							
								
							 | 
							funco | 
							⊢ ( ( Fun  ◡ 𝐺  ∧  Fun  ◡ 𝐹 )  →  Fun  ( ◡ 𝐺  ∘  ◡ 𝐹 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							cnvco | 
							⊢ ◡ ( 𝐹  ∘  𝐺 )  =  ( ◡ 𝐺  ∘  ◡ 𝐹 )  | 
						
						
							| 8 | 
							
								7
							 | 
							funeqi | 
							⊢ ( Fun  ◡ ( 𝐹  ∘  𝐺 )  ↔  Fun  ( ◡ 𝐺  ∘  ◡ 𝐹 ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							sylibr | 
							⊢ ( ( Fun  ◡ 𝐺  ∧  Fun  ◡ 𝐹 )  →  Fun  ◡ ( 𝐹  ∘  𝐺 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ancoms | 
							⊢ ( ( Fun  ◡ 𝐹  ∧  Fun  ◡ 𝐺 )  →  Fun  ◡ ( 𝐹  ∘  𝐺 ) )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							anim12i | 
							⊢ ( ( ( 𝐹 : 𝐶 ⟶ 𝐷  ∧  𝐺 : 𝐴 ⟶ 𝐵 )  ∧  ( Fun  ◡ 𝐹  ∧  Fun  ◡ 𝐺 ) )  →  ( ( 𝐹  ∘  𝐺 ) : ( ◡ 𝐺  “  𝐶 ) ⟶ 𝐷  ∧  Fun  ◡ ( 𝐹  ∘  𝐺 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							an4s | 
							⊢ ( ( ( 𝐹 : 𝐶 ⟶ 𝐷  ∧  Fun  ◡ 𝐹 )  ∧  ( 𝐺 : 𝐴 ⟶ 𝐵  ∧  Fun  ◡ 𝐺 ) )  →  ( ( 𝐹  ∘  𝐺 ) : ( ◡ 𝐺  “  𝐶 ) ⟶ 𝐷  ∧  Fun  ◡ ( 𝐹  ∘  𝐺 ) ) )  | 
						
						
							| 13 | 
							
								1 2 12
							 | 
							syl2anb | 
							⊢ ( ( 𝐹 : 𝐶 –1-1→ 𝐷  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  →  ( ( 𝐹  ∘  𝐺 ) : ( ◡ 𝐺  “  𝐶 ) ⟶ 𝐷  ∧  Fun  ◡ ( 𝐹  ∘  𝐺 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							df-f1 | 
							⊢ ( ( 𝐹  ∘  𝐺 ) : ( ◡ 𝐺  “  𝐶 ) –1-1→ 𝐷  ↔  ( ( 𝐹  ∘  𝐺 ) : ( ◡ 𝐺  “  𝐶 ) ⟶ 𝐷  ∧  Fun  ◡ ( 𝐹  ∘  𝐺 ) ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							sylibr | 
							⊢ ( ( 𝐹 : 𝐶 –1-1→ 𝐷  ∧  𝐺 : 𝐴 –1-1→ 𝐵 )  →  ( 𝐹  ∘  𝐺 ) : ( ◡ 𝐺  “  𝐶 ) –1-1→ 𝐷 )  |