| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f2ndres | ⊢ ( 2nd   ↾  ( 𝐴  ×  𝐵 ) ) : ( 𝐴  ×  𝐵 ) ⟶ 𝐵 | 
						
							| 2 |  | fssxp | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  ⊆  ( 𝐴  ×  𝐵 ) ) | 
						
							| 3 |  | fssres | ⊢ ( ( ( 2nd   ↾  ( 𝐴  ×  𝐵 ) ) : ( 𝐴  ×  𝐵 ) ⟶ 𝐵  ∧  𝐹  ⊆  ( 𝐴  ×  𝐵 ) )  →  ( ( 2nd   ↾  ( 𝐴  ×  𝐵 ) )  ↾  𝐹 ) : 𝐹 ⟶ 𝐵 ) | 
						
							| 4 | 1 2 3 | sylancr | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( ( 2nd   ↾  ( 𝐴  ×  𝐵 ) )  ↾  𝐹 ) : 𝐹 ⟶ 𝐵 ) | 
						
							| 5 | 2 | resabs1d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( ( 2nd   ↾  ( 𝐴  ×  𝐵 ) )  ↾  𝐹 )  =  ( 2nd   ↾  𝐹 ) ) | 
						
							| 6 | 5 | eqcomd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 2nd   ↾  𝐹 )  =  ( ( 2nd   ↾  ( 𝐴  ×  𝐵 ) )  ↾  𝐹 ) ) | 
						
							| 7 | 6 | feq1d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( ( 2nd   ↾  𝐹 ) : 𝐹 ⟶ 𝐵  ↔  ( ( 2nd   ↾  ( 𝐴  ×  𝐵 ) )  ↾  𝐹 ) : 𝐹 ⟶ 𝐵 ) ) | 
						
							| 8 | 4 7 | mpbird | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 2nd   ↾  𝐹 ) : 𝐹 ⟶ 𝐵 ) |