| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f2ndres |  |-  ( 2nd |` ( A X. B ) ) : ( A X. B ) --> B | 
						
							| 2 |  | fssxp |  |-  ( F : A --> B -> F C_ ( A X. B ) ) | 
						
							| 3 |  | fssres |  |-  ( ( ( 2nd |` ( A X. B ) ) : ( A X. B ) --> B /\ F C_ ( A X. B ) ) -> ( ( 2nd |` ( A X. B ) ) |` F ) : F --> B ) | 
						
							| 4 | 1 2 3 | sylancr |  |-  ( F : A --> B -> ( ( 2nd |` ( A X. B ) ) |` F ) : F --> B ) | 
						
							| 5 | 2 | resabs1d |  |-  ( F : A --> B -> ( ( 2nd |` ( A X. B ) ) |` F ) = ( 2nd |` F ) ) | 
						
							| 6 | 5 | eqcomd |  |-  ( F : A --> B -> ( 2nd |` F ) = ( ( 2nd |` ( A X. B ) ) |` F ) ) | 
						
							| 7 | 6 | feq1d |  |-  ( F : A --> B -> ( ( 2nd |` F ) : F --> B <-> ( ( 2nd |` ( A X. B ) ) |` F ) : F --> B ) ) | 
						
							| 8 | 4 7 | mpbird |  |-  ( F : A --> B -> ( 2nd |` F ) : F --> B ) |