| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffrn |  |-  ( F : A --> B -> F : A --> ran F ) | 
						
							| 2 |  | f2ndf |  |-  ( F : A --> ran F -> ( 2nd |` F ) : F --> ran F ) | 
						
							| 3 | 1 2 | syl |  |-  ( F : A --> B -> ( 2nd |` F ) : F --> ran F ) | 
						
							| 4 |  | ffn |  |-  ( F : A --> B -> F Fn A ) | 
						
							| 5 |  | dffn3 |  |-  ( F Fn A <-> F : A --> ran F ) | 
						
							| 6 | 5 2 | sylbi |  |-  ( F Fn A -> ( 2nd |` F ) : F --> ran F ) | 
						
							| 7 | 4 6 | syl |  |-  ( F : A --> B -> ( 2nd |` F ) : F --> ran F ) | 
						
							| 8 | 7 | frnd |  |-  ( F : A --> B -> ran ( 2nd |` F ) C_ ran F ) | 
						
							| 9 |  | elrn2g |  |-  ( y e. ran F -> ( y e. ran F <-> E. x <. x , y >. e. F ) ) | 
						
							| 10 | 9 | ibi |  |-  ( y e. ran F -> E. x <. x , y >. e. F ) | 
						
							| 11 |  | fvres |  |-  ( <. x , y >. e. F -> ( ( 2nd |` F ) ` <. x , y >. ) = ( 2nd ` <. x , y >. ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( F : A --> B /\ <. x , y >. e. F ) -> ( ( 2nd |` F ) ` <. x , y >. ) = ( 2nd ` <. x , y >. ) ) | 
						
							| 13 |  | vex |  |-  x e. _V | 
						
							| 14 |  | vex |  |-  y e. _V | 
						
							| 15 | 13 14 | op2nd |  |-  ( 2nd ` <. x , y >. ) = y | 
						
							| 16 | 12 15 | eqtr2di |  |-  ( ( F : A --> B /\ <. x , y >. e. F ) -> y = ( ( 2nd |` F ) ` <. x , y >. ) ) | 
						
							| 17 |  | f2ndf |  |-  ( F : A --> B -> ( 2nd |` F ) : F --> B ) | 
						
							| 18 | 17 | ffnd |  |-  ( F : A --> B -> ( 2nd |` F ) Fn F ) | 
						
							| 19 |  | fnfvelrn |  |-  ( ( ( 2nd |` F ) Fn F /\ <. x , y >. e. F ) -> ( ( 2nd |` F ) ` <. x , y >. ) e. ran ( 2nd |` F ) ) | 
						
							| 20 | 18 19 | sylan |  |-  ( ( F : A --> B /\ <. x , y >. e. F ) -> ( ( 2nd |` F ) ` <. x , y >. ) e. ran ( 2nd |` F ) ) | 
						
							| 21 | 16 20 | eqeltrd |  |-  ( ( F : A --> B /\ <. x , y >. e. F ) -> y e. ran ( 2nd |` F ) ) | 
						
							| 22 | 21 | ex |  |-  ( F : A --> B -> ( <. x , y >. e. F -> y e. ran ( 2nd |` F ) ) ) | 
						
							| 23 | 22 | exlimdv |  |-  ( F : A --> B -> ( E. x <. x , y >. e. F -> y e. ran ( 2nd |` F ) ) ) | 
						
							| 24 | 10 23 | syl5 |  |-  ( F : A --> B -> ( y e. ran F -> y e. ran ( 2nd |` F ) ) ) | 
						
							| 25 | 24 | ssrdv |  |-  ( F : A --> B -> ran F C_ ran ( 2nd |` F ) ) | 
						
							| 26 | 8 25 | eqssd |  |-  ( F : A --> B -> ran ( 2nd |` F ) = ran F ) | 
						
							| 27 |  | dffo2 |  |-  ( ( 2nd |` F ) : F -onto-> ran F <-> ( ( 2nd |` F ) : F --> ran F /\ ran ( 2nd |` F ) = ran F ) ) | 
						
							| 28 | 3 26 27 | sylanbrc |  |-  ( F : A --> B -> ( 2nd |` F ) : F -onto-> ran F ) |