| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1f |  |-  ( F : A -1-1-> B -> F : A --> B ) | 
						
							| 2 |  | fo2ndf |  |-  ( F : A --> B -> ( 2nd |` F ) : F -onto-> ran F ) | 
						
							| 3 | 1 2 | syl |  |-  ( F : A -1-1-> B -> ( 2nd |` F ) : F -onto-> ran F ) | 
						
							| 4 |  | f2ndf |  |-  ( F : A --> B -> ( 2nd |` F ) : F --> B ) | 
						
							| 5 | 1 4 | syl |  |-  ( F : A -1-1-> B -> ( 2nd |` F ) : F --> B ) | 
						
							| 6 |  | fssxp |  |-  ( F : A --> B -> F C_ ( A X. B ) ) | 
						
							| 7 | 1 6 | syl |  |-  ( F : A -1-1-> B -> F C_ ( A X. B ) ) | 
						
							| 8 |  | ssel2 |  |-  ( ( F C_ ( A X. B ) /\ x e. F ) -> x e. ( A X. B ) ) | 
						
							| 9 |  | elxp2 |  |-  ( x e. ( A X. B ) <-> E. a e. A E. v e. B x = <. a , v >. ) | 
						
							| 10 | 8 9 | sylib |  |-  ( ( F C_ ( A X. B ) /\ x e. F ) -> E. a e. A E. v e. B x = <. a , v >. ) | 
						
							| 11 |  | ssel2 |  |-  ( ( F C_ ( A X. B ) /\ y e. F ) -> y e. ( A X. B ) ) | 
						
							| 12 |  | elxp2 |  |-  ( y e. ( A X. B ) <-> E. b e. A E. w e. B y = <. b , w >. ) | 
						
							| 13 | 11 12 | sylib |  |-  ( ( F C_ ( A X. B ) /\ y e. F ) -> E. b e. A E. w e. B y = <. b , w >. ) | 
						
							| 14 | 10 13 | anim12dan |  |-  ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) -> ( E. a e. A E. v e. B x = <. a , v >. /\ E. b e. A E. w e. B y = <. b , w >. ) ) | 
						
							| 15 |  | fvres |  |-  ( <. a , v >. e. F -> ( ( 2nd |` F ) ` <. a , v >. ) = ( 2nd ` <. a , v >. ) ) | 
						
							| 16 | 15 | ad2antrr |  |-  ( ( ( <. a , v >. e. F /\ <. b , w >. e. F ) /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( ( 2nd |` F ) ` <. a , v >. ) = ( 2nd ` <. a , v >. ) ) | 
						
							| 17 |  | fvres |  |-  ( <. b , w >. e. F -> ( ( 2nd |` F ) ` <. b , w >. ) = ( 2nd ` <. b , w >. ) ) | 
						
							| 18 | 17 | ad2antlr |  |-  ( ( ( <. a , v >. e. F /\ <. b , w >. e. F ) /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( ( 2nd |` F ) ` <. b , w >. ) = ( 2nd ` <. b , w >. ) ) | 
						
							| 19 | 16 18 | eqeq12d |  |-  ( ( ( <. a , v >. e. F /\ <. b , w >. e. F ) /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) <-> ( 2nd ` <. a , v >. ) = ( 2nd ` <. b , w >. ) ) ) | 
						
							| 20 |  | vex |  |-  a e. _V | 
						
							| 21 |  | vex |  |-  v e. _V | 
						
							| 22 | 20 21 | op2nd |  |-  ( 2nd ` <. a , v >. ) = v | 
						
							| 23 |  | vex |  |-  b e. _V | 
						
							| 24 |  | vex |  |-  w e. _V | 
						
							| 25 | 23 24 | op2nd |  |-  ( 2nd ` <. b , w >. ) = w | 
						
							| 26 | 22 25 | eqeq12i |  |-  ( ( 2nd ` <. a , v >. ) = ( 2nd ` <. b , w >. ) <-> v = w ) | 
						
							| 27 |  | f1fun |  |-  ( F : A -1-1-> B -> Fun F ) | 
						
							| 28 |  | funopfv |  |-  ( Fun F -> ( <. a , v >. e. F -> ( F ` a ) = v ) ) | 
						
							| 29 |  | funopfv |  |-  ( Fun F -> ( <. b , w >. e. F -> ( F ` b ) = w ) ) | 
						
							| 30 | 28 29 | anim12d |  |-  ( Fun F -> ( ( <. a , v >. e. F /\ <. b , w >. e. F ) -> ( ( F ` a ) = v /\ ( F ` b ) = w ) ) ) | 
						
							| 31 | 27 30 | syl |  |-  ( F : A -1-1-> B -> ( ( <. a , v >. e. F /\ <. b , w >. e. F ) -> ( ( F ` a ) = v /\ ( F ` b ) = w ) ) ) | 
						
							| 32 |  | eqcom |  |-  ( ( F ` a ) = v <-> v = ( F ` a ) ) | 
						
							| 33 | 32 | biimpi |  |-  ( ( F ` a ) = v -> v = ( F ` a ) ) | 
						
							| 34 |  | eqcom |  |-  ( ( F ` b ) = w <-> w = ( F ` b ) ) | 
						
							| 35 | 34 | biimpi |  |-  ( ( F ` b ) = w -> w = ( F ` b ) ) | 
						
							| 36 | 33 35 | eqeqan12d |  |-  ( ( ( F ` a ) = v /\ ( F ` b ) = w ) -> ( v = w <-> ( F ` a ) = ( F ` b ) ) ) | 
						
							| 37 |  | simpl |  |-  ( ( a e. A /\ v e. B ) -> a e. A ) | 
						
							| 38 |  | simpl |  |-  ( ( b e. A /\ w e. B ) -> b e. A ) | 
						
							| 39 | 37 38 | anim12i |  |-  ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( a e. A /\ b e. A ) ) | 
						
							| 40 |  | f1veqaeq |  |-  ( ( F : A -1-1-> B /\ ( a e. A /\ b e. A ) ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) | 
						
							| 41 | 39 40 | sylan2 |  |-  ( ( F : A -1-1-> B /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) | 
						
							| 42 |  | opeq12 |  |-  ( ( a = b /\ v = w ) -> <. a , v >. = <. b , w >. ) | 
						
							| 43 | 42 | ex |  |-  ( a = b -> ( v = w -> <. a , v >. = <. b , w >. ) ) | 
						
							| 44 | 41 43 | syl6 |  |-  ( ( F : A -1-1-> B /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( ( F ` a ) = ( F ` b ) -> ( v = w -> <. a , v >. = <. b , w >. ) ) ) | 
						
							| 45 | 44 | com23 |  |-  ( ( F : A -1-1-> B /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( v = w -> ( ( F ` a ) = ( F ` b ) -> <. a , v >. = <. b , w >. ) ) ) | 
						
							| 46 | 45 | ex |  |-  ( F : A -1-1-> B -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( v = w -> ( ( F ` a ) = ( F ` b ) -> <. a , v >. = <. b , w >. ) ) ) ) | 
						
							| 47 | 46 | com14 |  |-  ( ( F ` a ) = ( F ` b ) -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( v = w -> ( F : A -1-1-> B -> <. a , v >. = <. b , w >. ) ) ) ) | 
						
							| 48 | 36 47 | biimtrdi |  |-  ( ( ( F ` a ) = v /\ ( F ` b ) = w ) -> ( v = w -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( v = w -> ( F : A -1-1-> B -> <. a , v >. = <. b , w >. ) ) ) ) ) | 
						
							| 49 | 48 | com14 |  |-  ( v = w -> ( v = w -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( ( ( F ` a ) = v /\ ( F ` b ) = w ) -> ( F : A -1-1-> B -> <. a , v >. = <. b , w >. ) ) ) ) ) | 
						
							| 50 | 49 | pm2.43i |  |-  ( v = w -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( ( ( F ` a ) = v /\ ( F ` b ) = w ) -> ( F : A -1-1-> B -> <. a , v >. = <. b , w >. ) ) ) ) | 
						
							| 51 | 50 | com14 |  |-  ( F : A -1-1-> B -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( ( ( F ` a ) = v /\ ( F ` b ) = w ) -> ( v = w -> <. a , v >. = <. b , w >. ) ) ) ) | 
						
							| 52 | 51 | com23 |  |-  ( F : A -1-1-> B -> ( ( ( F ` a ) = v /\ ( F ` b ) = w ) -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( v = w -> <. a , v >. = <. b , w >. ) ) ) ) | 
						
							| 53 | 31 52 | syld |  |-  ( F : A -1-1-> B -> ( ( <. a , v >. e. F /\ <. b , w >. e. F ) -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( v = w -> <. a , v >. = <. b , w >. ) ) ) ) | 
						
							| 54 | 53 | com13 |  |-  ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( ( <. a , v >. e. F /\ <. b , w >. e. F ) -> ( F : A -1-1-> B -> ( v = w -> <. a , v >. = <. b , w >. ) ) ) ) | 
						
							| 55 | 54 | impcom |  |-  ( ( ( <. a , v >. e. F /\ <. b , w >. e. F ) /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( F : A -1-1-> B -> ( v = w -> <. a , v >. = <. b , w >. ) ) ) | 
						
							| 56 | 55 | com23 |  |-  ( ( ( <. a , v >. e. F /\ <. b , w >. e. F ) /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( v = w -> ( F : A -1-1-> B -> <. a , v >. = <. b , w >. ) ) ) | 
						
							| 57 | 26 56 | biimtrid |  |-  ( ( ( <. a , v >. e. F /\ <. b , w >. e. F ) /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( ( 2nd ` <. a , v >. ) = ( 2nd ` <. b , w >. ) -> ( F : A -1-1-> B -> <. a , v >. = <. b , w >. ) ) ) | 
						
							| 58 | 19 57 | sylbid |  |-  ( ( ( <. a , v >. e. F /\ <. b , w >. e. F ) /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) -> ( F : A -1-1-> B -> <. a , v >. = <. b , w >. ) ) ) | 
						
							| 59 | 58 | com23 |  |-  ( ( ( <. a , v >. e. F /\ <. b , w >. e. F ) /\ ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) -> <. a , v >. = <. b , w >. ) ) ) | 
						
							| 60 | 59 | ex |  |-  ( ( <. a , v >. e. F /\ <. b , w >. e. F ) -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) -> <. a , v >. = <. b , w >. ) ) ) ) | 
						
							| 61 | 60 | adantl |  |-  ( ( F C_ ( A X. B ) /\ ( <. a , v >. e. F /\ <. b , w >. e. F ) ) -> ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) -> <. a , v >. = <. b , w >. ) ) ) ) | 
						
							| 62 | 61 | com12 |  |-  ( ( ( a e. A /\ v e. B ) /\ ( b e. A /\ w e. B ) ) -> ( ( F C_ ( A X. B ) /\ ( <. a , v >. e. F /\ <. b , w >. e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) -> <. a , v >. = <. b , w >. ) ) ) ) | 
						
							| 63 | 62 | ad4ant13 |  |-  ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> ( ( F C_ ( A X. B ) /\ ( <. a , v >. e. F /\ <. b , w >. e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) -> <. a , v >. = <. b , w >. ) ) ) ) | 
						
							| 64 |  | eleq1 |  |-  ( x = <. a , v >. -> ( x e. F <-> <. a , v >. e. F ) ) | 
						
							| 65 | 64 | ad2antlr |  |-  ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) -> ( x e. F <-> <. a , v >. e. F ) ) | 
						
							| 66 |  | eleq1 |  |-  ( y = <. b , w >. -> ( y e. F <-> <. b , w >. e. F ) ) | 
						
							| 67 | 65 66 | bi2anan9 |  |-  ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> ( ( x e. F /\ y e. F ) <-> ( <. a , v >. e. F /\ <. b , w >. e. F ) ) ) | 
						
							| 68 | 67 | anbi2d |  |-  ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) <-> ( F C_ ( A X. B ) /\ ( <. a , v >. e. F /\ <. b , w >. e. F ) ) ) ) | 
						
							| 69 |  | fveq2 |  |-  ( x = <. a , v >. -> ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` <. a , v >. ) ) | 
						
							| 70 | 69 | ad2antlr |  |-  ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) -> ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` <. a , v >. ) ) | 
						
							| 71 |  | fveq2 |  |-  ( y = <. b , w >. -> ( ( 2nd |` F ) ` y ) = ( ( 2nd |` F ) ` <. b , w >. ) ) | 
						
							| 72 | 70 71 | eqeqan12d |  |-  ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) <-> ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) ) ) | 
						
							| 73 |  | simpllr |  |-  ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> x = <. a , v >. ) | 
						
							| 74 |  | simpr |  |-  ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> y = <. b , w >. ) | 
						
							| 75 | 73 74 | eqeq12d |  |-  ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> ( x = y <-> <. a , v >. = <. b , w >. ) ) | 
						
							| 76 | 72 75 | imbi12d |  |-  ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> ( ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) <-> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) -> <. a , v >. = <. b , w >. ) ) ) | 
						
							| 77 | 76 | imbi2d |  |-  ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> ( ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) <-> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` <. a , v >. ) = ( ( 2nd |` F ) ` <. b , w >. ) -> <. a , v >. = <. b , w >. ) ) ) ) | 
						
							| 78 | 63 68 77 | 3imtr4d |  |-  ( ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) /\ y = <. b , w >. ) -> ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) ) | 
						
							| 79 | 78 | ex |  |-  ( ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) /\ ( b e. A /\ w e. B ) ) -> ( y = <. b , w >. -> ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) ) ) | 
						
							| 80 | 79 | rexlimdvva |  |-  ( ( ( a e. A /\ v e. B ) /\ x = <. a , v >. ) -> ( E. b e. A E. w e. B y = <. b , w >. -> ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) ) ) | 
						
							| 81 | 80 | ex |  |-  ( ( a e. A /\ v e. B ) -> ( x = <. a , v >. -> ( E. b e. A E. w e. B y = <. b , w >. -> ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) ) ) ) | 
						
							| 82 | 81 | rexlimivv |  |-  ( E. a e. A E. v e. B x = <. a , v >. -> ( E. b e. A E. w e. B y = <. b , w >. -> ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) ) ) | 
						
							| 83 | 82 | imp |  |-  ( ( E. a e. A E. v e. B x = <. a , v >. /\ E. b e. A E. w e. B y = <. b , w >. ) -> ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) ) | 
						
							| 84 | 14 83 | mpcom |  |-  ( ( F C_ ( A X. B ) /\ ( x e. F /\ y e. F ) ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) | 
						
							| 85 | 84 | ex |  |-  ( F C_ ( A X. B ) -> ( ( x e. F /\ y e. F ) -> ( F : A -1-1-> B -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) ) | 
						
							| 86 | 85 | com23 |  |-  ( F C_ ( A X. B ) -> ( F : A -1-1-> B -> ( ( x e. F /\ y e. F ) -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) ) | 
						
							| 87 | 7 86 | mpcom |  |-  ( F : A -1-1-> B -> ( ( x e. F /\ y e. F ) -> ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) | 
						
							| 88 | 87 | ralrimivv |  |-  ( F : A -1-1-> B -> A. x e. F A. y e. F ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) | 
						
							| 89 |  | dff13 |  |-  ( ( 2nd |` F ) : F -1-1-> B <-> ( ( 2nd |` F ) : F --> B /\ A. x e. F A. y e. F ( ( ( 2nd |` F ) ` x ) = ( ( 2nd |` F ) ` y ) -> x = y ) ) ) | 
						
							| 90 | 5 88 89 | sylanbrc |  |-  ( F : A -1-1-> B -> ( 2nd |` F ) : F -1-1-> B ) | 
						
							| 91 |  | df-f1 |  |-  ( ( 2nd |` F ) : F -1-1-> B <-> ( ( 2nd |` F ) : F --> B /\ Fun `' ( 2nd |` F ) ) ) | 
						
							| 92 | 91 | simprbi |  |-  ( ( 2nd |` F ) : F -1-1-> B -> Fun `' ( 2nd |` F ) ) | 
						
							| 93 | 90 92 | syl |  |-  ( F : A -1-1-> B -> Fun `' ( 2nd |` F ) ) | 
						
							| 94 |  | dff1o3 |  |-  ( ( 2nd |` F ) : F -1-1-onto-> ran F <-> ( ( 2nd |` F ) : F -onto-> ran F /\ Fun `' ( 2nd |` F ) ) ) | 
						
							| 95 | 3 93 94 | sylanbrc |  |-  ( F : A -1-1-> B -> ( 2nd |` F ) : F -1-1-onto-> ran F ) |