| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1f |  | 
						
							| 2 |  | fo2ndf |  | 
						
							| 3 | 1 2 | syl |  | 
						
							| 4 |  | f2ndf |  | 
						
							| 5 | 1 4 | syl |  | 
						
							| 6 |  | fssxp |  | 
						
							| 7 | 1 6 | syl |  | 
						
							| 8 |  | ssel2 |  | 
						
							| 9 |  | elxp2 |  | 
						
							| 10 | 8 9 | sylib |  | 
						
							| 11 |  | ssel2 |  | 
						
							| 12 |  | elxp2 |  | 
						
							| 13 | 11 12 | sylib |  | 
						
							| 14 | 10 13 | anim12dan |  | 
						
							| 15 |  | fvres |  | 
						
							| 16 | 15 | ad2antrr |  | 
						
							| 17 |  | fvres |  | 
						
							| 18 | 17 | ad2antlr |  | 
						
							| 19 | 16 18 | eqeq12d |  | 
						
							| 20 |  | vex |  | 
						
							| 21 |  | vex |  | 
						
							| 22 | 20 21 | op2nd |  | 
						
							| 23 |  | vex |  | 
						
							| 24 |  | vex |  | 
						
							| 25 | 23 24 | op2nd |  | 
						
							| 26 | 22 25 | eqeq12i |  | 
						
							| 27 |  | f1fun |  | 
						
							| 28 |  | funopfv |  | 
						
							| 29 |  | funopfv |  | 
						
							| 30 | 28 29 | anim12d |  | 
						
							| 31 | 27 30 | syl |  | 
						
							| 32 |  | eqcom |  | 
						
							| 33 | 32 | biimpi |  | 
						
							| 34 |  | eqcom |  | 
						
							| 35 | 34 | biimpi |  | 
						
							| 36 | 33 35 | eqeqan12d |  | 
						
							| 37 |  | simpl |  | 
						
							| 38 |  | simpl |  | 
						
							| 39 | 37 38 | anim12i |  | 
						
							| 40 |  | f1veqaeq |  | 
						
							| 41 | 39 40 | sylan2 |  | 
						
							| 42 |  | opeq12 |  | 
						
							| 43 | 42 | ex |  | 
						
							| 44 | 41 43 | syl6 |  | 
						
							| 45 | 44 | com23 |  | 
						
							| 46 | 45 | ex |  | 
						
							| 47 | 46 | com14 |  | 
						
							| 48 | 36 47 | biimtrdi |  | 
						
							| 49 | 48 | com14 |  | 
						
							| 50 | 49 | pm2.43i |  | 
						
							| 51 | 50 | com14 |  | 
						
							| 52 | 51 | com23 |  | 
						
							| 53 | 31 52 | syld |  | 
						
							| 54 | 53 | com13 |  | 
						
							| 55 | 54 | impcom |  | 
						
							| 56 | 55 | com23 |  | 
						
							| 57 | 26 56 | biimtrid |  | 
						
							| 58 | 19 57 | sylbid |  | 
						
							| 59 | 58 | com23 |  | 
						
							| 60 | 59 | ex |  | 
						
							| 61 | 60 | adantl |  | 
						
							| 62 | 61 | com12 |  | 
						
							| 63 | 62 | ad4ant13 |  | 
						
							| 64 |  | eleq1 |  | 
						
							| 65 | 64 | ad2antlr |  | 
						
							| 66 |  | eleq1 |  | 
						
							| 67 | 65 66 | bi2anan9 |  | 
						
							| 68 | 67 | anbi2d |  | 
						
							| 69 |  | fveq2 |  | 
						
							| 70 | 69 | ad2antlr |  | 
						
							| 71 |  | fveq2 |  | 
						
							| 72 | 70 71 | eqeqan12d |  | 
						
							| 73 |  | simpllr |  | 
						
							| 74 |  | simpr |  | 
						
							| 75 | 73 74 | eqeq12d |  | 
						
							| 76 | 72 75 | imbi12d |  | 
						
							| 77 | 76 | imbi2d |  | 
						
							| 78 | 63 68 77 | 3imtr4d |  | 
						
							| 79 | 78 | ex |  | 
						
							| 80 | 79 | rexlimdvva |  | 
						
							| 81 | 80 | ex |  | 
						
							| 82 | 81 | rexlimivv |  | 
						
							| 83 | 82 | imp |  | 
						
							| 84 | 14 83 | mpcom |  | 
						
							| 85 | 84 | ex |  | 
						
							| 86 | 85 | com23 |  | 
						
							| 87 | 7 86 | mpcom |  | 
						
							| 88 | 87 | ralrimivv |  | 
						
							| 89 |  | dff13 |  | 
						
							| 90 | 5 88 89 | sylanbrc |  | 
						
							| 91 |  | df-f1 |  | 
						
							| 92 | 91 | simprbi |  | 
						
							| 93 | 90 92 | syl |  | 
						
							| 94 |  | dff1o3 |  | 
						
							| 95 | 3 93 94 | sylanbrc |  |