| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							f11o.1 | 
							⊢ 𝐹  ∈  V  | 
						
						
							| 2 | 
							
								
							 | 
							df-f | 
							⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  ↔  ( 𝐹  Fn  𝐴  ∧  ran  𝐹  ⊆  𝐵 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							dffn4 | 
							⊢ ( 𝐹  Fn  𝐴  ↔  𝐹 : 𝐴 –onto→ ran  𝐹 )  | 
						
						
							| 4 | 
							
								3
							 | 
							anbi1i | 
							⊢ ( ( 𝐹  Fn  𝐴  ∧  ran  𝐹  ⊆  𝐵 )  ↔  ( 𝐹 : 𝐴 –onto→ ran  𝐹  ∧  ran  𝐹  ⊆  𝐵 ) )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							bitri | 
							⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  ↔  ( 𝐹 : 𝐴 –onto→ ran  𝐹  ∧  ran  𝐹  ⊆  𝐵 ) )  | 
						
						
							| 6 | 
							
								1
							 | 
							rnex | 
							⊢ ran  𝐹  ∈  V  | 
						
						
							| 7 | 
							
								
							 | 
							foeq3 | 
							⊢ ( 𝑥  =  ran  𝐹  →  ( 𝐹 : 𝐴 –onto→ 𝑥  ↔  𝐹 : 𝐴 –onto→ ran  𝐹 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							sseq1 | 
							⊢ ( 𝑥  =  ran  𝐹  →  ( 𝑥  ⊆  𝐵  ↔  ran  𝐹  ⊆  𝐵 ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  ran  𝐹  →  ( ( 𝐹 : 𝐴 –onto→ 𝑥  ∧  𝑥  ⊆  𝐵 )  ↔  ( 𝐹 : 𝐴 –onto→ ran  𝐹  ∧  ran  𝐹  ⊆  𝐵 ) ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							spcev | 
							⊢ ( ( 𝐹 : 𝐴 –onto→ ran  𝐹  ∧  ran  𝐹  ⊆  𝐵 )  →  ∃ 𝑥 ( 𝐹 : 𝐴 –onto→ 𝑥  ∧  𝑥  ⊆  𝐵 ) )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							sylbi | 
							⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ∃ 𝑥 ( 𝐹 : 𝐴 –onto→ 𝑥  ∧  𝑥  ⊆  𝐵 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fof | 
							⊢ ( 𝐹 : 𝐴 –onto→ 𝑥  →  𝐹 : 𝐴 ⟶ 𝑥 )  | 
						
						
							| 13 | 
							
								
							 | 
							fss | 
							⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑥  ∧  𝑥  ⊆  𝐵 )  →  𝐹 : 𝐴 ⟶ 𝐵 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							sylan | 
							⊢ ( ( 𝐹 : 𝐴 –onto→ 𝑥  ∧  𝑥  ⊆  𝐵 )  →  𝐹 : 𝐴 ⟶ 𝐵 )  | 
						
						
							| 15 | 
							
								14
							 | 
							exlimiv | 
							⊢ ( ∃ 𝑥 ( 𝐹 : 𝐴 –onto→ 𝑥  ∧  𝑥  ⊆  𝐵 )  →  𝐹 : 𝐴 ⟶ 𝐵 )  | 
						
						
							| 16 | 
							
								11 15
							 | 
							impbii | 
							⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  ↔  ∃ 𝑥 ( 𝐹 : 𝐴 –onto→ 𝑥  ∧  𝑥  ⊆  𝐵 ) )  |