Metamath Proof Explorer


Theorem filssufil

Description: A filter is contained in some ultrafilter. (Requires the Axiom of Choice, via numth3 .) (Contributed by Jeff Hankins, 2-Dec-2009) (Revised by Stefan O'Rear, 29-Jul-2015)

Ref Expression
Assertion filssufil ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹𝑓 )

Proof

Step Hyp Ref Expression
1 filtop ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋𝐹 )
2 pwexg ( 𝑋𝐹 → 𝒫 𝑋 ∈ V )
3 pwexg ( 𝒫 𝑋 ∈ V → 𝒫 𝒫 𝑋 ∈ V )
4 numth3 ( 𝒫 𝒫 𝑋 ∈ V → 𝒫 𝒫 𝑋 ∈ dom card )
5 1 2 3 4 4syl ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝒫 𝒫 𝑋 ∈ dom card )
6 filssufilg ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝒫 𝒫 𝑋 ∈ dom card ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹𝑓 )
7 5 6 mpdan ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹𝑓 )