Metamath Proof Explorer


Theorem fin2i2

Description: A II-finite set contains minimal elements for every nonempty chain. (Contributed by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion fin2i2 ( ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) ) → 𝐵𝐵 )

Proof

Step Hyp Ref Expression
1 simplr ( ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) ) → 𝐵 ⊆ 𝒫 𝐴 )
2 simpll ( ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) ) → 𝐴 ∈ FinII )
3 ssrab2 { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ⊆ 𝒫 𝐴
4 3 a1i ( ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) ) → { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ⊆ 𝒫 𝐴 )
5 simprl ( ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) ) → 𝐵 ≠ ∅ )
6 fin23lem7 ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴𝐵 ≠ ∅ ) → { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ≠ ∅ )
7 2 1 5 6 syl3anc ( ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) ) → { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ≠ ∅ )
8 sorpsscmpl ( [] Or 𝐵 → [] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } )
9 8 ad2antll ( ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) ) → [] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } )
10 fin2i ( ( ( 𝐴 ∈ FinII ∧ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ⊆ 𝒫 𝐴 ) ∧ ( { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ≠ ∅ ∧ [] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ) ) → { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } )
11 2 4 7 9 10 syl22anc ( ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) ) → { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } )
12 sorpssuni ( [] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } → ( ∃ 𝑚 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ∀ 𝑛 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ¬ 𝑚𝑛 { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ) )
13 9 12 syl ( ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) ) → ( ∃ 𝑚 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ∀ 𝑛 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ¬ 𝑚𝑛 { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ) )
14 11 13 mpbird ( ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) ) → ∃ 𝑚 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ∀ 𝑛 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ¬ 𝑚𝑛 )
15 psseq2 ( 𝑧 = ( 𝐴𝑚 ) → ( 𝑤𝑧𝑤 ⊊ ( 𝐴𝑚 ) ) )
16 psseq2 ( 𝑛 = ( 𝐴𝑤 ) → ( 𝑚𝑛𝑚 ⊊ ( 𝐴𝑤 ) ) )
17 pssdifcom2 ( ( 𝑚𝐴𝑤𝐴 ) → ( 𝑤 ⊊ ( 𝐴𝑚 ) ↔ 𝑚 ⊊ ( 𝐴𝑤 ) ) )
18 15 16 17 fin23lem11 ( 𝐵 ⊆ 𝒫 𝐴 → ( ∃ 𝑚 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ∀ 𝑛 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑐 ) ∈ 𝐵 } ¬ 𝑚𝑛 → ∃ 𝑧𝐵𝑤𝐵 ¬ 𝑤𝑧 ) )
19 1 14 18 sylc ( ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) ) → ∃ 𝑧𝐵𝑤𝐵 ¬ 𝑤𝑧 )
20 sorpssint ( [] Or 𝐵 → ( ∃ 𝑧𝐵𝑤𝐵 ¬ 𝑤𝑧 𝐵𝐵 ) )
21 20 ad2antll ( ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) ) → ( ∃ 𝑧𝐵𝑤𝐵 ¬ 𝑤𝑧 𝐵𝐵 ) )
22 19 21 mpbid ( ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) ) → 𝐵𝐵 )