| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sorpssi |
⊢ ( ( [⊊] Or 𝑌 ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
| 2 |
1
|
anassrs |
⊢ ( ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ) ∧ 𝑣 ∈ 𝑌 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) |
| 3 |
|
sspss |
⊢ ( 𝑢 ⊆ 𝑣 ↔ ( 𝑢 ⊊ 𝑣 ∨ 𝑢 = 𝑣 ) ) |
| 4 |
|
orel1 |
⊢ ( ¬ 𝑢 ⊊ 𝑣 → ( ( 𝑢 ⊊ 𝑣 ∨ 𝑢 = 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 5 |
|
eqimss2 |
⊢ ( 𝑢 = 𝑣 → 𝑣 ⊆ 𝑢 ) |
| 6 |
4 5
|
syl6com |
⊢ ( ( 𝑢 ⊊ 𝑣 ∨ 𝑢 = 𝑣 ) → ( ¬ 𝑢 ⊊ 𝑣 → 𝑣 ⊆ 𝑢 ) ) |
| 7 |
3 6
|
sylbi |
⊢ ( 𝑢 ⊆ 𝑣 → ( ¬ 𝑢 ⊊ 𝑣 → 𝑣 ⊆ 𝑢 ) ) |
| 8 |
|
ax-1 |
⊢ ( 𝑣 ⊆ 𝑢 → ( ¬ 𝑢 ⊊ 𝑣 → 𝑣 ⊆ 𝑢 ) ) |
| 9 |
7 8
|
jaoi |
⊢ ( ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) → ( ¬ 𝑢 ⊊ 𝑣 → 𝑣 ⊆ 𝑢 ) ) |
| 10 |
2 9
|
syl |
⊢ ( ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ) ∧ 𝑣 ∈ 𝑌 ) → ( ¬ 𝑢 ⊊ 𝑣 → 𝑣 ⊆ 𝑢 ) ) |
| 11 |
10
|
ralimdva |
⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ) → ( ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 → ∀ 𝑣 ∈ 𝑌 𝑣 ⊆ 𝑢 ) ) |
| 12 |
11
|
3impia |
⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ) → ∀ 𝑣 ∈ 𝑌 𝑣 ⊆ 𝑢 ) |
| 13 |
|
unissb |
⊢ ( ∪ 𝑌 ⊆ 𝑢 ↔ ∀ 𝑣 ∈ 𝑌 𝑣 ⊆ 𝑢 ) |
| 14 |
12 13
|
sylibr |
⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ) → ∪ 𝑌 ⊆ 𝑢 ) |
| 15 |
|
elssuni |
⊢ ( 𝑢 ∈ 𝑌 → 𝑢 ⊆ ∪ 𝑌 ) |
| 16 |
15
|
3ad2ant2 |
⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ) → 𝑢 ⊆ ∪ 𝑌 ) |
| 17 |
14 16
|
eqssd |
⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ) → ∪ 𝑌 = 𝑢 ) |
| 18 |
|
simp2 |
⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ) → 𝑢 ∈ 𝑌 ) |
| 19 |
17 18
|
eqeltrd |
⊢ ( ( [⊊] Or 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ) → ∪ 𝑌 ∈ 𝑌 ) |
| 20 |
19
|
rexlimdv3a |
⊢ ( [⊊] Or 𝑌 → ( ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 → ∪ 𝑌 ∈ 𝑌 ) ) |
| 21 |
|
elssuni |
⊢ ( 𝑣 ∈ 𝑌 → 𝑣 ⊆ ∪ 𝑌 ) |
| 22 |
|
ssnpss |
⊢ ( 𝑣 ⊆ ∪ 𝑌 → ¬ ∪ 𝑌 ⊊ 𝑣 ) |
| 23 |
21 22
|
syl |
⊢ ( 𝑣 ∈ 𝑌 → ¬ ∪ 𝑌 ⊊ 𝑣 ) |
| 24 |
23
|
rgen |
⊢ ∀ 𝑣 ∈ 𝑌 ¬ ∪ 𝑌 ⊊ 𝑣 |
| 25 |
|
psseq1 |
⊢ ( 𝑢 = ∪ 𝑌 → ( 𝑢 ⊊ 𝑣 ↔ ∪ 𝑌 ⊊ 𝑣 ) ) |
| 26 |
25
|
notbid |
⊢ ( 𝑢 = ∪ 𝑌 → ( ¬ 𝑢 ⊊ 𝑣 ↔ ¬ ∪ 𝑌 ⊊ 𝑣 ) ) |
| 27 |
26
|
ralbidv |
⊢ ( 𝑢 = ∪ 𝑌 → ( ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ↔ ∀ 𝑣 ∈ 𝑌 ¬ ∪ 𝑌 ⊊ 𝑣 ) ) |
| 28 |
27
|
rspcev |
⊢ ( ( ∪ 𝑌 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝑌 ¬ ∪ 𝑌 ⊊ 𝑣 ) → ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ) |
| 29 |
24 28
|
mpan2 |
⊢ ( ∪ 𝑌 ∈ 𝑌 → ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ) |
| 30 |
20 29
|
impbid1 |
⊢ ( [⊊] Or 𝑌 → ( ∃ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ↔ ∪ 𝑌 ∈ 𝑌 ) ) |