| Step |
Hyp |
Ref |
Expression |
| 1 |
|
find.1 |
⊢ ( 𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) |
| 2 |
1
|
simp1i |
⊢ 𝐴 ⊆ ω |
| 3 |
|
3simpc |
⊢ ( ( 𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) → ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) |
| 4 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) |
| 5 |
|
alral |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) → ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) |
| 6 |
4 5
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) |
| 7 |
6
|
anim2i |
⊢ ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) → ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ) |
| 8 |
1 3 7
|
mp2b |
⊢ ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) |
| 9 |
|
peano5 |
⊢ ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) → ω ⊆ 𝐴 ) |
| 10 |
8 9
|
ax-mp |
⊢ ω ⊆ 𝐴 |
| 11 |
2 10
|
eqssi |
⊢ 𝐴 = ω |