Step |
Hyp |
Ref |
Expression |
1 |
|
find.1 |
⊢ ( 𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) |
2 |
1
|
simp1i |
⊢ 𝐴 ⊆ ω |
3 |
|
3simpc |
⊢ ( ( 𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) → ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) |
4 |
1 3
|
ax-mp |
⊢ ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) |
5 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) |
6 |
|
alral |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) → ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) |
7 |
5 6
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) |
8 |
7
|
anim2i |
⊢ ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) → ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) ) |
9 |
4 8
|
ax-mp |
⊢ ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) |
10 |
|
peano5 |
⊢ ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) ) → ω ⊆ 𝐴 ) |
11 |
9 10
|
ax-mp |
⊢ ω ⊆ 𝐴 |
12 |
2 11
|
eqssi |
⊢ 𝐴 = ω |