Metamath Proof Explorer


Theorem findOLD

Description: Obsolete version of find as of 28-May-2024. (Contributed by NM, 22-Feb-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis find.1 A ω A x A suc x A
Assertion findOLD A = ω

Proof

Step Hyp Ref Expression
1 find.1 A ω A x A suc x A
2 1 simp1i A ω
3 3simpc A ω A x A suc x A A x A suc x A
4 1 3 ax-mp A x A suc x A
5 df-ral x A suc x A x x A suc x A
6 alral x x A suc x A x ω x A suc x A
7 5 6 sylbi x A suc x A x ω x A suc x A
8 7 anim2i A x A suc x A A x ω x A suc x A
9 4 8 ax-mp A x ω x A suc x A
10 peano5 A x ω x A suc x A ω A
11 9 10 ax-mp ω A
12 2 11 eqssi A = ω