Metamath Proof Explorer


Theorem findOLD

Description: Obsolete version of find as of 28-May-2024. (Contributed by NM, 22-Feb-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis find.1
|- ( A C_ _om /\ (/) e. A /\ A. x e. A suc x e. A )
Assertion findOLD
|- A = _om

Proof

Step Hyp Ref Expression
1 find.1
 |-  ( A C_ _om /\ (/) e. A /\ A. x e. A suc x e. A )
2 1 simp1i
 |-  A C_ _om
3 3simpc
 |-  ( ( A C_ _om /\ (/) e. A /\ A. x e. A suc x e. A ) -> ( (/) e. A /\ A. x e. A suc x e. A ) )
4 1 3 ax-mp
 |-  ( (/) e. A /\ A. x e. A suc x e. A )
5 df-ral
 |-  ( A. x e. A suc x e. A <-> A. x ( x e. A -> suc x e. A ) )
6 alral
 |-  ( A. x ( x e. A -> suc x e. A ) -> A. x e. _om ( x e. A -> suc x e. A ) )
7 5 6 sylbi
 |-  ( A. x e. A suc x e. A -> A. x e. _om ( x e. A -> suc x e. A ) )
8 7 anim2i
 |-  ( ( (/) e. A /\ A. x e. A suc x e. A ) -> ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) ) )
9 4 8 ax-mp
 |-  ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) )
10 peano5
 |-  ( ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) ) -> _om C_ A )
11 9 10 ax-mp
 |-  _om C_ A
12 2 11 eqssi
 |-  A = _om