Metamath Proof Explorer


Theorem find

Description: The Principle of Finite Induction (mathematical induction). Corollary 7.31 of TakeutiZaring p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that A is a set of natural numbers, zero belongs to A , and given any member of A the member's successor also belongs to A . The conclusion is that every natural number is in A . (Contributed by NM, 22-Feb-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by Wolf Lammen, 28-May-2024)

Ref Expression
Hypothesis find.1
|- ( A C_ _om /\ (/) e. A /\ A. x e. A suc x e. A )
Assertion find
|- A = _om

Proof

Step Hyp Ref Expression
1 find.1
 |-  ( A C_ _om /\ (/) e. A /\ A. x e. A suc x e. A )
2 1 simp1i
 |-  A C_ _om
3 3simpc
 |-  ( ( A C_ _om /\ (/) e. A /\ A. x e. A suc x e. A ) -> ( (/) e. A /\ A. x e. A suc x e. A ) )
4 df-ral
 |-  ( A. x e. A suc x e. A <-> A. x ( x e. A -> suc x e. A ) )
5 alral
 |-  ( A. x ( x e. A -> suc x e. A ) -> A. x e. _om ( x e. A -> suc x e. A ) )
6 4 5 sylbi
 |-  ( A. x e. A suc x e. A -> A. x e. _om ( x e. A -> suc x e. A ) )
7 6 anim2i
 |-  ( ( (/) e. A /\ A. x e. A suc x e. A ) -> ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) ) )
8 1 3 7 mp2b
 |-  ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) )
9 peano5
 |-  ( ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) ) -> _om C_ A )
10 8 9 ax-mp
 |-  _om C_ A
11 2 10 eqssi
 |-  A = _om