Description: The Principle of Finite Induction (mathematical induction). Corollary 7.31 of TakeutiZaring p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that A is a set of natural numbers, zero belongs to A , and given any member of A the member's successor also belongs to A . The conclusion is that every natural number is in A . (Contributed by NM, 22-Feb-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by Wolf Lammen, 28-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | find.1 | |- ( A C_ _om /\ (/) e. A /\ A. x e. A suc x e. A ) |
|
Assertion | find | |- A = _om |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | find.1 | |- ( A C_ _om /\ (/) e. A /\ A. x e. A suc x e. A ) |
|
2 | 1 | simp1i | |- A C_ _om |
3 | 3simpc | |- ( ( A C_ _om /\ (/) e. A /\ A. x e. A suc x e. A ) -> ( (/) e. A /\ A. x e. A suc x e. A ) ) |
|
4 | df-ral | |- ( A. x e. A suc x e. A <-> A. x ( x e. A -> suc x e. A ) ) |
|
5 | alral | |- ( A. x ( x e. A -> suc x e. A ) -> A. x e. _om ( x e. A -> suc x e. A ) ) |
|
6 | 4 5 | sylbi | |- ( A. x e. A suc x e. A -> A. x e. _om ( x e. A -> suc x e. A ) ) |
7 | 6 | anim2i | |- ( ( (/) e. A /\ A. x e. A suc x e. A ) -> ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) ) ) |
8 | 1 3 7 | mp2b | |- ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) ) |
9 | peano5 | |- ( ( (/) e. A /\ A. x e. _om ( x e. A -> suc x e. A ) ) -> _om C_ A ) |
|
10 | 8 9 | ax-mp | |- _om C_ A |
11 | 2 10 | eqssi | |- A = _om |