| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → 𝑍 ⊆ ℤ ) |
| 2 |
|
simp2 |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → 𝑍 ∈ Fin ) |
| 3 |
|
eqid |
⊢ ( abs ‘ ∏ 𝑘 ∈ 𝑍 𝑘 ) = ( abs ‘ ∏ 𝑘 ∈ 𝑍 𝑘 ) |
| 4 |
|
simp3 |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → 0 ∉ 𝑍 ) |
| 5 |
1 2 3 4
|
absprodnn |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( abs ‘ ∏ 𝑘 ∈ 𝑍 𝑘 ) ∈ ℕ ) |
| 6 |
|
breq2 |
⊢ ( 𝑛 = ( abs ‘ ∏ 𝑘 ∈ 𝑍 𝑘 ) → ( 𝑚 ∥ 𝑛 ↔ 𝑚 ∥ ( abs ‘ ∏ 𝑘 ∈ 𝑍 𝑘 ) ) ) |
| 7 |
6
|
ralbidv |
⊢ ( 𝑛 = ( abs ‘ ∏ 𝑘 ∈ 𝑍 𝑘 ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 ↔ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( abs ‘ ∏ 𝑘 ∈ 𝑍 𝑘 ) ) ) |
| 8 |
7
|
adantl |
⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ∧ 𝑛 = ( abs ‘ ∏ 𝑘 ∈ 𝑍 𝑘 ) ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 ↔ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( abs ‘ ∏ 𝑘 ∈ 𝑍 𝑘 ) ) ) |
| 9 |
1 2 3
|
absproddvds |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( abs ‘ ∏ 𝑘 ∈ 𝑍 𝑘 ) ) |
| 10 |
5 8 9
|
rspcedvd |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 ) |