Metamath Proof Explorer


Theorem fissn0dvds

Description: For each finite subset of the integers not containing 0 there is a positive integer which is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020)

Ref Expression
Assertion fissn0dvds ZZFin0ZnmZmn

Proof

Step Hyp Ref Expression
1 simp1 ZZFin0ZZ
2 simp2 ZZFin0ZZFin
3 eqid kZk=kZk
4 simp3 ZZFin0Z0Z
5 1 2 3 4 absprodnn ZZFin0ZkZk
6 breq2 n=kZkmnmkZk
7 6 ralbidv n=kZkmZmnmZmkZk
8 7 adantl ZZFin0Zn=kZkmZmnmZmkZk
9 1 2 3 absproddvds ZZFin0ZmZmkZk
10 5 8 9 rspcedvd ZZFin0ZnmZmn