Metamath Proof Explorer


Theorem flfelbas

Description: A limit point of a function is in the topological space. (Contributed by Jeff Hankins, 10-Nov-2009) (Revised by Stefan O'Rear, 7-Aug-2015)

Ref Expression
Assertion flfelbas ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) → 𝐴𝑋 )

Proof

Step Hyp Ref Expression
1 isflf ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴𝑋 ∧ ∀ 𝑜𝐽 ( 𝐴𝑜 → ∃ 𝑠𝐿 ( 𝐹𝑠 ) ⊆ 𝑜 ) ) ) )
2 1 simprbda ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) → 𝐴𝑋 )