| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flimtop |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top ) |
| 2 |
|
istopon |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽 ) ) |
| 3 |
2
|
baib |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝑋 = ∪ 𝐽 ) ) |
| 4 |
1 3
|
syl |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝑋 = ∪ 𝐽 ) ) |
| 5 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 6 |
5
|
flimfil |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑋 = ∪ 𝐽 → ( Fil ‘ 𝑋 ) = ( Fil ‘ ∪ 𝐽 ) ) |
| 8 |
7
|
eleq2d |
⊢ ( 𝑋 = ∪ 𝐽 → ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) ) |
| 9 |
6 8
|
syl5ibrcom |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝑋 = ∪ 𝐽 → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) |
| 10 |
|
filunibas |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) → ∪ 𝐹 = ∪ 𝐽 ) |
| 11 |
6 10
|
syl |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ∪ 𝐹 = ∪ 𝐽 ) |
| 12 |
|
filunibas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
| 13 |
12
|
eqeq1d |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∪ 𝐹 = ∪ 𝐽 ↔ 𝑋 = ∪ 𝐽 ) ) |
| 14 |
11 13
|
syl5ibcom |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) ) |
| 15 |
9 14
|
impbid |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝑋 = ∪ 𝐽 ↔ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) |
| 16 |
4 15
|
bitrd |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) |