| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fltltc.a | ⊢ ( 𝜑  →  𝐴  ∈  ℕ ) | 
						
							| 2 |  | fltltc.b | ⊢ ( 𝜑  →  𝐵  ∈  ℕ ) | 
						
							| 3 |  | fltltc.c | ⊢ ( 𝜑  →  𝐶  ∈  ℕ ) | 
						
							| 4 |  | fltltc.n | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 5 |  | fltltc.1 | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 𝑁 )  +  ( 𝐵 ↑ 𝑁 ) )  =  ( 𝐶 ↑ 𝑁 ) ) | 
						
							| 6 | 1 | nncnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 7 |  | eluzge3nn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑁  ∈  ℕ ) | 
						
							| 8 | 4 7 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 | 8 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 10 | 6 9 | expcld | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 11 | 2 | nncnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 12 | 11 9 | expcld | ⊢ ( 𝜑  →  ( 𝐵 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 13 | 10 12 5 | mvlladdd | ⊢ ( 𝜑  →  ( 𝐵 ↑ 𝑁 )  =  ( ( 𝐶 ↑ 𝑁 )  −  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 14 | 3 | nnred | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 15 | 14 9 | reexpcld | ⊢ ( 𝜑  →  ( 𝐶 ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 16 | 1 | nnrpd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 17 | 8 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 18 | 16 17 | rpexpcld | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑁 )  ∈  ℝ+ ) | 
						
							| 19 | 15 18 | ltsubrpd | ⊢ ( 𝜑  →  ( ( 𝐶 ↑ 𝑁 )  −  ( 𝐴 ↑ 𝑁 ) )  <  ( 𝐶 ↑ 𝑁 ) ) | 
						
							| 20 | 13 19 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝐵 ↑ 𝑁 )  <  ( 𝐶 ↑ 𝑁 ) ) | 
						
							| 21 | 2 | nnrpd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 22 | 3 | nnrpd | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 23 | 21 22 8 | ltexp1d | ⊢ ( 𝜑  →  ( 𝐵  <  𝐶  ↔  ( 𝐵 ↑ 𝑁 )  <  ( 𝐶 ↑ 𝑁 ) ) ) | 
						
							| 24 | 20 23 | mpbird | ⊢ ( 𝜑  →  𝐵  <  𝐶 ) |