| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fltltc.a |  |-  ( ph -> A e. NN ) | 
						
							| 2 |  | fltltc.b |  |-  ( ph -> B e. NN ) | 
						
							| 3 |  | fltltc.c |  |-  ( ph -> C e. NN ) | 
						
							| 4 |  | fltltc.n |  |-  ( ph -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 5 |  | fltltc.1 |  |-  ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) | 
						
							| 6 | 1 | nncnd |  |-  ( ph -> A e. CC ) | 
						
							| 7 |  | eluzge3nn |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. NN ) | 
						
							| 8 | 4 7 | syl |  |-  ( ph -> N e. NN ) | 
						
							| 9 | 8 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 10 | 6 9 | expcld |  |-  ( ph -> ( A ^ N ) e. CC ) | 
						
							| 11 | 2 | nncnd |  |-  ( ph -> B e. CC ) | 
						
							| 12 | 11 9 | expcld |  |-  ( ph -> ( B ^ N ) e. CC ) | 
						
							| 13 | 10 12 5 | mvlladdd |  |-  ( ph -> ( B ^ N ) = ( ( C ^ N ) - ( A ^ N ) ) ) | 
						
							| 14 | 3 | nnred |  |-  ( ph -> C e. RR ) | 
						
							| 15 | 14 9 | reexpcld |  |-  ( ph -> ( C ^ N ) e. RR ) | 
						
							| 16 | 1 | nnrpd |  |-  ( ph -> A e. RR+ ) | 
						
							| 17 | 8 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 18 | 16 17 | rpexpcld |  |-  ( ph -> ( A ^ N ) e. RR+ ) | 
						
							| 19 | 15 18 | ltsubrpd |  |-  ( ph -> ( ( C ^ N ) - ( A ^ N ) ) < ( C ^ N ) ) | 
						
							| 20 | 13 19 | eqbrtrd |  |-  ( ph -> ( B ^ N ) < ( C ^ N ) ) | 
						
							| 21 | 2 | nnrpd |  |-  ( ph -> B e. RR+ ) | 
						
							| 22 | 3 | nnrpd |  |-  ( ph -> C e. RR+ ) | 
						
							| 23 | 21 22 8 | ltexp1d |  |-  ( ph -> ( B < C <-> ( B ^ N ) < ( C ^ N ) ) ) | 
						
							| 24 | 20 23 | mpbird |  |-  ( ph -> B < C ) |