| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fltltc.a |
|- ( ph -> A e. NN ) |
| 2 |
|
fltltc.b |
|- ( ph -> B e. NN ) |
| 3 |
|
fltltc.c |
|- ( ph -> C e. NN ) |
| 4 |
|
fltltc.n |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
| 5 |
|
fltltc.1 |
|- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) |
| 6 |
1
|
nncnd |
|- ( ph -> A e. CC ) |
| 7 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
| 8 |
4 7
|
syl |
|- ( ph -> N e. NN ) |
| 9 |
8
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 10 |
6 9
|
expcld |
|- ( ph -> ( A ^ N ) e. CC ) |
| 11 |
2
|
nncnd |
|- ( ph -> B e. CC ) |
| 12 |
11 9
|
expcld |
|- ( ph -> ( B ^ N ) e. CC ) |
| 13 |
10 12 5
|
mvlladdd |
|- ( ph -> ( B ^ N ) = ( ( C ^ N ) - ( A ^ N ) ) ) |
| 14 |
3
|
nnred |
|- ( ph -> C e. RR ) |
| 15 |
14 9
|
reexpcld |
|- ( ph -> ( C ^ N ) e. RR ) |
| 16 |
1
|
nnrpd |
|- ( ph -> A e. RR+ ) |
| 17 |
8
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 18 |
16 17
|
rpexpcld |
|- ( ph -> ( A ^ N ) e. RR+ ) |
| 19 |
15 18
|
ltsubrpd |
|- ( ph -> ( ( C ^ N ) - ( A ^ N ) ) < ( C ^ N ) ) |
| 20 |
13 19
|
eqbrtrd |
|- ( ph -> ( B ^ N ) < ( C ^ N ) ) |
| 21 |
2
|
nnrpd |
|- ( ph -> B e. RR+ ) |
| 22 |
3
|
nnrpd |
|- ( ph -> C e. RR+ ) |
| 23 |
21 22 8
|
ltexp1d |
|- ( ph -> ( B < C <-> ( B ^ N ) < ( C ^ N ) ) ) |
| 24 |
20 23
|
mpbird |
|- ( ph -> B < C ) |