Step |
Hyp |
Ref |
Expression |
1 |
|
fltltc.a |
|- ( ph -> A e. NN ) |
2 |
|
fltltc.b |
|- ( ph -> B e. NN ) |
3 |
|
fltltc.c |
|- ( ph -> C e. NN ) |
4 |
|
fltltc.n |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
5 |
|
fltltc.1 |
|- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) |
6 |
3
|
nnred |
|- ( ph -> C e. RR ) |
7 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
8 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
9 |
4 7 8
|
3syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
10 |
6 9
|
reexpcld |
|- ( ph -> ( C ^ ( N - 1 ) ) e. RR ) |
11 |
9
|
nn0red |
|- ( ph -> ( N - 1 ) e. RR ) |
12 |
2
|
nnred |
|- ( ph -> B e. RR ) |
13 |
12 9
|
reexpcld |
|- ( ph -> ( B ^ ( N - 1 ) ) e. RR ) |
14 |
11 13
|
remulcld |
|- ( ph -> ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) e. RR ) |
15 |
10 14
|
readdcld |
|- ( ph -> ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) e. RR ) |
16 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
17 |
16
|
a1i |
|- ( ph -> ( 0 ..^ N ) e. Fin ) |
18 |
6
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> C e. RR ) |
19 |
|
elfzonn0 |
|- ( k e. ( 0 ..^ N ) -> k e. NN0 ) |
20 |
19
|
adantl |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. NN0 ) |
21 |
18 20
|
reexpcld |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( C ^ k ) e. RR ) |
22 |
12
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> B e. RR ) |
23 |
|
fzonnsub |
|- ( k e. ( 0 ..^ N ) -> ( N - k ) e. NN ) |
24 |
23
|
adantl |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( N - k ) e. NN ) |
25 |
|
nnm1nn0 |
|- ( ( N - k ) e. NN -> ( ( N - k ) - 1 ) e. NN0 ) |
26 |
24 25
|
syl |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( N - k ) - 1 ) e. NN0 ) |
27 |
22 26
|
reexpcld |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( B ^ ( ( N - k ) - 1 ) ) e. RR ) |
28 |
21 27
|
remulcld |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) e. RR ) |
29 |
17 28
|
fsumrecl |
|- ( ph -> sum_ k e. ( 0 ..^ N ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) e. RR ) |
30 |
1 2 3 4 5
|
fltltc |
|- ( ph -> B < C ) |
31 |
|
difrp |
|- ( ( B e. RR /\ C e. RR ) -> ( B < C <-> ( C - B ) e. RR+ ) ) |
32 |
12 6 31
|
syl2anc |
|- ( ph -> ( B < C <-> ( C - B ) e. RR+ ) ) |
33 |
30 32
|
mpbid |
|- ( ph -> ( C - B ) e. RR+ ) |
34 |
|
fzofi |
|- ( 0 ..^ ( N - 1 ) ) e. Fin |
35 |
34
|
a1i |
|- ( ph -> ( 0 ..^ ( N - 1 ) ) e. Fin ) |
36 |
6
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> C e. RR ) |
37 |
|
elfzonn0 |
|- ( k e. ( 0 ..^ ( N - 1 ) ) -> k e. NN0 ) |
38 |
37
|
adantl |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> k e. NN0 ) |
39 |
36 38
|
reexpcld |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( C ^ k ) e. RR ) |
40 |
12
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> B e. RR ) |
41 |
|
fzonnsub |
|- ( k e. ( 0 ..^ ( N - 1 ) ) -> ( ( N - 1 ) - k ) e. NN ) |
42 |
41
|
nnnn0d |
|- ( k e. ( 0 ..^ ( N - 1 ) ) -> ( ( N - 1 ) - k ) e. NN0 ) |
43 |
42
|
adantl |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( N - 1 ) - k ) e. NN0 ) |
44 |
40 43
|
reexpcld |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( B ^ ( ( N - 1 ) - k ) ) e. RR ) |
45 |
39 44
|
remulcld |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) e. RR ) |
46 |
35 45
|
fsumrecl |
|- ( ph -> sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) e. RR ) |
47 |
|
fzofi |
|- ( 0 ..^ ( ( N - 1 ) - 1 ) ) e. Fin |
48 |
47
|
a1i |
|- ( ph -> ( 0 ..^ ( ( N - 1 ) - 1 ) ) e. Fin ) |
49 |
12
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> B e. RR ) |
50 |
|
elfzonn0 |
|- ( k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) -> k e. NN0 ) |
51 |
50
|
adantl |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> k e. NN0 ) |
52 |
49 51
|
reexpcld |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( B ^ k ) e. RR ) |
53 |
|
simpr |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) |
54 |
|
1nn0 |
|- 1 e. NN0 |
55 |
|
elfzoext |
|- ( ( k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) /\ 1 e. NN0 ) -> k e. ( 0 ..^ ( ( ( N - 1 ) - 1 ) + 1 ) ) ) |
56 |
53 54 55
|
sylancl |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> k e. ( 0 ..^ ( ( ( N - 1 ) - 1 ) + 1 ) ) ) |
57 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
58 |
4 7 57
|
3syl |
|- ( ph -> N e. NN0 ) |
59 |
58
|
nn0cnd |
|- ( ph -> N e. CC ) |
60 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
61 |
59 60
|
subcld |
|- ( ph -> ( N - 1 ) e. CC ) |
62 |
61 60
|
npcand |
|- ( ph -> ( ( ( N - 1 ) - 1 ) + 1 ) = ( N - 1 ) ) |
63 |
62
|
oveq2d |
|- ( ph -> ( 0 ..^ ( ( ( N - 1 ) - 1 ) + 1 ) ) = ( 0 ..^ ( N - 1 ) ) ) |
64 |
63
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( 0 ..^ ( ( ( N - 1 ) - 1 ) + 1 ) ) = ( 0 ..^ ( N - 1 ) ) ) |
65 |
56 64
|
eleqtrd |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> k e. ( 0 ..^ ( N - 1 ) ) ) |
66 |
65 42
|
syl |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( ( N - 1 ) - k ) e. NN0 ) |
67 |
49 66
|
reexpcld |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( B ^ ( ( N - 1 ) - k ) ) e. RR ) |
68 |
52 67
|
remulcld |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) e. RR ) |
69 |
48 68
|
fsumrecl |
|- ( ph -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) e. RR ) |
70 |
|
sub1m1 |
|- ( N e. CC -> ( ( N - 1 ) - 1 ) = ( N - 2 ) ) |
71 |
59 70
|
syl |
|- ( ph -> ( ( N - 1 ) - 1 ) = ( N - 2 ) ) |
72 |
|
uz3m2nn |
|- ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN ) |
73 |
4 72
|
syl |
|- ( ph -> ( N - 2 ) e. NN ) |
74 |
71 73
|
eqeltrd |
|- ( ph -> ( ( N - 1 ) - 1 ) e. NN ) |
75 |
74
|
nnnn0d |
|- ( ph -> ( ( N - 1 ) - 1 ) e. NN0 ) |
76 |
12 75
|
reexpcld |
|- ( ph -> ( B ^ ( ( N - 1 ) - 1 ) ) e. RR ) |
77 |
76 12
|
remulcld |
|- ( ph -> ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) e. RR ) |
78 |
69 77
|
readdcld |
|- ( ph -> ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) e. RR ) |
79 |
6
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> C e. RR ) |
80 |
79 51
|
reexpcld |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( C ^ k ) e. RR ) |
81 |
80 67
|
remulcld |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) e. RR ) |
82 |
48 81
|
fsumrecl |
|- ( ph -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) e. RR ) |
83 |
6 75
|
reexpcld |
|- ( ph -> ( C ^ ( ( N - 1 ) - 1 ) ) e. RR ) |
84 |
83 12
|
remulcld |
|- ( ph -> ( ( C ^ ( ( N - 1 ) - 1 ) ) x. B ) e. RR ) |
85 |
82 84
|
readdcld |
|- ( ph -> ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( C ^ ( ( N - 1 ) - 1 ) ) x. B ) ) e. RR ) |
86 |
2
|
nncnd |
|- ( ph -> B e. CC ) |
87 |
|
uzuzle23 |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) ) |
88 |
4 87
|
syl |
|- ( ph -> N e. ( ZZ>= ` 2 ) ) |
89 |
|
uz2m1nn |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) |
90 |
88 89
|
syl |
|- ( ph -> ( N - 1 ) e. NN ) |
91 |
|
expm1t |
|- ( ( B e. CC /\ ( N - 1 ) e. NN ) -> ( B ^ ( N - 1 ) ) = ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) |
92 |
86 90 91
|
syl2anc |
|- ( ph -> ( B ^ ( N - 1 ) ) = ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) |
93 |
92
|
eqcomd |
|- ( ph -> ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) = ( B ^ ( N - 1 ) ) ) |
94 |
93
|
oveq2d |
|- ( ph -> ( ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) + ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) = ( ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) + ( B ^ ( N - 1 ) ) ) ) |
95 |
61 60
|
subcld |
|- ( ph -> ( ( N - 1 ) - 1 ) e. CC ) |
96 |
86 9
|
expcld |
|- ( ph -> ( B ^ ( N - 1 ) ) e. CC ) |
97 |
95 96
|
adddirp1d |
|- ( ph -> ( ( ( ( N - 1 ) - 1 ) + 1 ) x. ( B ^ ( N - 1 ) ) ) = ( ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) + ( B ^ ( N - 1 ) ) ) ) |
98 |
62
|
oveq1d |
|- ( ph -> ( ( ( ( N - 1 ) - 1 ) + 1 ) x. ( B ^ ( N - 1 ) ) ) = ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) |
99 |
94 97 98
|
3eqtr2rd |
|- ( ph -> ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) = ( ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) + ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) ) |
100 |
14 99
|
eqled |
|- ( ph -> ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) <_ ( ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) + ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) ) |
101 |
37
|
nn0cnd |
|- ( k e. ( 0 ..^ ( N - 1 ) ) -> k e. CC ) |
102 |
65 101
|
syl |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> k e. CC ) |
103 |
61
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( N - 1 ) e. CC ) |
104 |
102 103
|
pncan3d |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( k + ( ( N - 1 ) - k ) ) = ( N - 1 ) ) |
105 |
104
|
oveq2d |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( B ^ ( k + ( ( N - 1 ) - k ) ) ) = ( B ^ ( N - 1 ) ) ) |
106 |
105
|
sumeq2dv |
|- ( ph -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( B ^ ( k + ( ( N - 1 ) - k ) ) ) = sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( B ^ ( N - 1 ) ) ) |
107 |
86
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> B e. CC ) |
108 |
107 66 51
|
expaddd |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( B ^ ( k + ( ( N - 1 ) - k ) ) ) = ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) |
109 |
108
|
sumeq2dv |
|- ( ph -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( B ^ ( k + ( ( N - 1 ) - k ) ) ) = sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) |
110 |
|
fsumconst |
|- ( ( ( 0 ..^ ( ( N - 1 ) - 1 ) ) e. Fin /\ ( B ^ ( N - 1 ) ) e. CC ) -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( B ^ ( N - 1 ) ) = ( ( # ` ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) x. ( B ^ ( N - 1 ) ) ) ) |
111 |
48 96 110
|
syl2anc |
|- ( ph -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( B ^ ( N - 1 ) ) = ( ( # ` ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) x. ( B ^ ( N - 1 ) ) ) ) |
112 |
|
hashfzo0 |
|- ( ( ( N - 1 ) - 1 ) e. NN0 -> ( # ` ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) = ( ( N - 1 ) - 1 ) ) |
113 |
75 112
|
syl |
|- ( ph -> ( # ` ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) = ( ( N - 1 ) - 1 ) ) |
114 |
113
|
oveq1d |
|- ( ph -> ( ( # ` ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) x. ( B ^ ( N - 1 ) ) ) = ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) ) |
115 |
111 114
|
eqtrd |
|- ( ph -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( B ^ ( N - 1 ) ) = ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) ) |
116 |
106 109 115
|
3eqtr3d |
|- ( ph -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) = ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) ) |
117 |
116
|
oveq1d |
|- ( ph -> ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) = ( ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) + ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) ) |
118 |
100 117
|
breqtrrd |
|- ( ph -> ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) <_ ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) ) |
119 |
2
|
nnrpd |
|- ( ph -> B e. RR+ ) |
120 |
119
|
rpge0d |
|- ( ph -> 0 <_ B ) |
121 |
120
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> 0 <_ B ) |
122 |
49 66 121
|
expge0d |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> 0 <_ ( B ^ ( ( N - 1 ) - k ) ) ) |
123 |
12 6 30
|
ltled |
|- ( ph -> B <_ C ) |
124 |
123
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> B <_ C ) |
125 |
|
leexp1a |
|- ( ( ( B e. RR /\ C e. RR /\ k e. NN0 ) /\ ( 0 <_ B /\ B <_ C ) ) -> ( B ^ k ) <_ ( C ^ k ) ) |
126 |
49 79 51 121 124 125
|
syl32anc |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( B ^ k ) <_ ( C ^ k ) ) |
127 |
52 80 67 122 126
|
lemul1ad |
|- ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) <_ ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) |
128 |
48 68 81 127
|
fsumle |
|- ( ph -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) <_ sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) |
129 |
3
|
nnrpd |
|- ( ph -> C e. RR+ ) |
130 |
119 129 74 30
|
ltexp1dd |
|- ( ph -> ( B ^ ( ( N - 1 ) - 1 ) ) < ( C ^ ( ( N - 1 ) - 1 ) ) ) |
131 |
76 83 119 130
|
ltmul1dd |
|- ( ph -> ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) < ( ( C ^ ( ( N - 1 ) - 1 ) ) x. B ) ) |
132 |
69 77 82 84 128 131
|
leltaddd |
|- ( ph -> ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) < ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( C ^ ( ( N - 1 ) - 1 ) ) x. B ) ) ) |
133 |
14 78 85 118 132
|
lelttrd |
|- ( ph -> ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) < ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( C ^ ( ( N - 1 ) - 1 ) ) x. B ) ) ) |
134 |
61 60
|
nncand |
|- ( ph -> ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) = 1 ) |
135 |
134
|
oveq2d |
|- ( ph -> ( B ^ ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) = ( B ^ 1 ) ) |
136 |
86
|
exp1d |
|- ( ph -> ( B ^ 1 ) = B ) |
137 |
135 136
|
eqtrd |
|- ( ph -> ( B ^ ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) = B ) |
138 |
137
|
oveq2d |
|- ( ph -> ( ( C ^ ( ( N - 1 ) - 1 ) ) x. ( B ^ ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) ) = ( ( C ^ ( ( N - 1 ) - 1 ) ) x. B ) ) |
139 |
138
|
oveq2d |
|- ( ph -> ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( C ^ ( ( N - 1 ) - 1 ) ) x. ( B ^ ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) ) ) = ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( C ^ ( ( N - 1 ) - 1 ) ) x. B ) ) ) |
140 |
133 139
|
breqtrrd |
|- ( ph -> ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) < ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( C ^ ( ( N - 1 ) - 1 ) ) x. ( B ^ ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) ) ) ) |
141 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
142 |
141
|
peano2zd |
|- ( ph -> ( 0 + 1 ) e. ZZ ) |
143 |
|
0cn |
|- 0 e. CC |
144 |
|
ax-1cn |
|- 1 e. CC |
145 |
143 144 144
|
addassi |
|- ( ( 0 + 1 ) + 1 ) = ( 0 + ( 1 + 1 ) ) |
146 |
144 144
|
addcli |
|- ( 1 + 1 ) e. CC |
147 |
146
|
addid2i |
|- ( 0 + ( 1 + 1 ) ) = ( 1 + 1 ) |
148 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
149 |
145 147 148
|
3eqtri |
|- ( ( 0 + 1 ) + 1 ) = 2 |
150 |
149
|
a1i |
|- ( ph -> ( ( 0 + 1 ) + 1 ) = 2 ) |
151 |
150
|
fveq2d |
|- ( ph -> ( ZZ>= ` ( ( 0 + 1 ) + 1 ) ) = ( ZZ>= ` 2 ) ) |
152 |
88 151
|
eleqtrrd |
|- ( ph -> N e. ( ZZ>= ` ( ( 0 + 1 ) + 1 ) ) ) |
153 |
|
eluzp1m1 |
|- ( ( ( 0 + 1 ) e. ZZ /\ N e. ( ZZ>= ` ( ( 0 + 1 ) + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` ( 0 + 1 ) ) ) |
154 |
142 152 153
|
syl2anc |
|- ( ph -> ( N - 1 ) e. ( ZZ>= ` ( 0 + 1 ) ) ) |
155 |
|
eluzp1m1 |
|- ( ( 0 e. ZZ /\ ( N - 1 ) e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( ( N - 1 ) - 1 ) e. ( ZZ>= ` 0 ) ) |
156 |
141 154 155
|
syl2anc |
|- ( ph -> ( ( N - 1 ) - 1 ) e. ( ZZ>= ` 0 ) ) |
157 |
3
|
nncnd |
|- ( ph -> C e. CC ) |
158 |
157
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> C e. CC ) |
159 |
158 38
|
expcld |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( C ^ k ) e. CC ) |
160 |
86
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> B e. CC ) |
161 |
160 43
|
expcld |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( B ^ ( ( N - 1 ) - k ) ) e. CC ) |
162 |
159 161
|
mulcld |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) e. CC ) |
163 |
|
oveq2 |
|- ( k = ( ( N - 1 ) - 1 ) -> ( C ^ k ) = ( C ^ ( ( N - 1 ) - 1 ) ) ) |
164 |
|
oveq2 |
|- ( k = ( ( N - 1 ) - 1 ) -> ( ( N - 1 ) - k ) = ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) |
165 |
164
|
oveq2d |
|- ( k = ( ( N - 1 ) - 1 ) -> ( B ^ ( ( N - 1 ) - k ) ) = ( B ^ ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) ) |
166 |
163 165
|
oveq12d |
|- ( k = ( ( N - 1 ) - 1 ) -> ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) = ( ( C ^ ( ( N - 1 ) - 1 ) ) x. ( B ^ ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) ) ) |
167 |
9
|
nn0zd |
|- ( ph -> ( N - 1 ) e. ZZ ) |
168 |
156 162 166 167
|
fzosumm1 |
|- ( ph -> sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) = ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( C ^ ( ( N - 1 ) - 1 ) ) x. ( B ^ ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) ) ) ) |
169 |
140 168
|
breqtrrd |
|- ( ph -> ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) < sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) |
170 |
14 46 10 169
|
ltadd2dd |
|- ( ph -> ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) < ( ( C ^ ( N - 1 ) ) + sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) ) |
171 |
35 162
|
fsumcl |
|- ( ph -> sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) e. CC ) |
172 |
157 9
|
expcld |
|- ( ph -> ( C ^ ( N - 1 ) ) e. CC ) |
173 |
171 172
|
addcomd |
|- ( ph -> ( sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( C ^ ( N - 1 ) ) ) = ( ( C ^ ( N - 1 ) ) + sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) ) |
174 |
170 173
|
breqtrrd |
|- ( ph -> ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) < ( sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( C ^ ( N - 1 ) ) ) ) |
175 |
59
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> N e. CC ) |
176 |
101
|
adantl |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> k e. CC ) |
177 |
|
1cnd |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> 1 e. CC ) |
178 |
175 176 177
|
sub32d |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( N - k ) - 1 ) = ( ( N - 1 ) - k ) ) |
179 |
178
|
oveq2d |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( B ^ ( ( N - k ) - 1 ) ) = ( B ^ ( ( N - 1 ) - k ) ) ) |
180 |
179
|
oveq2d |
|- ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) |
181 |
180
|
sumeq2dv |
|- ( ph -> sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) |
182 |
59 59 60
|
nnncand |
|- ( ph -> ( ( N - ( N - 1 ) ) - 1 ) = ( N - N ) ) |
183 |
59
|
subidd |
|- ( ph -> ( N - N ) = 0 ) |
184 |
182 183
|
eqtrd |
|- ( ph -> ( ( N - ( N - 1 ) ) - 1 ) = 0 ) |
185 |
184
|
oveq2d |
|- ( ph -> ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) = ( B ^ 0 ) ) |
186 |
86
|
exp0d |
|- ( ph -> ( B ^ 0 ) = 1 ) |
187 |
185 186
|
eqtrd |
|- ( ph -> ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) = 1 ) |
188 |
187
|
oveq2d |
|- ( ph -> ( ( C ^ ( N - 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) = ( ( C ^ ( N - 1 ) ) x. 1 ) ) |
189 |
10
|
recnd |
|- ( ph -> ( C ^ ( N - 1 ) ) e. CC ) |
190 |
189
|
mulid1d |
|- ( ph -> ( ( C ^ ( N - 1 ) ) x. 1 ) = ( C ^ ( N - 1 ) ) ) |
191 |
188 190
|
eqtrd |
|- ( ph -> ( ( C ^ ( N - 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) = ( C ^ ( N - 1 ) ) ) |
192 |
181 191
|
oveq12d |
|- ( ph -> ( sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( C ^ ( N - 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) = ( sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( C ^ ( N - 1 ) ) ) ) |
193 |
174 192
|
breqtrrd |
|- ( ph -> ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) < ( sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( C ^ ( N - 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) ) |
194 |
|
elnn0uz |
|- ( ( N - 1 ) e. NN0 <-> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
195 |
9 194
|
sylib |
|- ( ph -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
196 |
157
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> C e. CC ) |
197 |
196 20
|
expcld |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( C ^ k ) e. CC ) |
198 |
86
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> B e. CC ) |
199 |
198 26
|
expcld |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( B ^ ( ( N - k ) - 1 ) ) e. CC ) |
200 |
197 199
|
mulcld |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) e. CC ) |
201 |
|
oveq2 |
|- ( k = ( N - 1 ) -> ( C ^ k ) = ( C ^ ( N - 1 ) ) ) |
202 |
|
oveq2 |
|- ( k = ( N - 1 ) -> ( N - k ) = ( N - ( N - 1 ) ) ) |
203 |
202
|
oveq1d |
|- ( k = ( N - 1 ) -> ( ( N - k ) - 1 ) = ( ( N - ( N - 1 ) ) - 1 ) ) |
204 |
203
|
oveq2d |
|- ( k = ( N - 1 ) -> ( B ^ ( ( N - k ) - 1 ) ) = ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) |
205 |
201 204
|
oveq12d |
|- ( k = ( N - 1 ) -> ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( ( C ^ ( N - 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) |
206 |
58
|
nn0zd |
|- ( ph -> N e. ZZ ) |
207 |
195 200 205 206
|
fzosumm1 |
|- ( ph -> sum_ k e. ( 0 ..^ N ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( C ^ ( N - 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) ) |
208 |
193 207
|
breqtrrd |
|- ( ph -> ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) < sum_ k e. ( 0 ..^ N ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) |
209 |
15 29 33 208
|
ltmul2dd |
|- ( ph -> ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) < ( ( C - B ) x. sum_ k e. ( 0 ..^ N ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) |
210 |
|
pwdif |
|- ( ( N e. NN0 /\ C e. CC /\ B e. CC ) -> ( ( C ^ N ) - ( B ^ N ) ) = ( ( C - B ) x. sum_ k e. ( 0 ..^ N ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) |
211 |
58 157 86 210
|
syl3anc |
|- ( ph -> ( ( C ^ N ) - ( B ^ N ) ) = ( ( C - B ) x. sum_ k e. ( 0 ..^ N ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) |
212 |
209 211
|
breqtrrd |
|- ( ph -> ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) < ( ( C ^ N ) - ( B ^ N ) ) ) |
213 |
1
|
nncnd |
|- ( ph -> A e. CC ) |
214 |
213 58
|
expcld |
|- ( ph -> ( A ^ N ) e. CC ) |
215 |
86 58
|
expcld |
|- ( ph -> ( B ^ N ) e. CC ) |
216 |
214 215 5
|
mvlraddd |
|- ( ph -> ( A ^ N ) = ( ( C ^ N ) - ( B ^ N ) ) ) |
217 |
212 216
|
breqtrrd |
|- ( ph -> ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) < ( A ^ N ) ) |