| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fltltc.a |  |-  ( ph -> A e. NN ) | 
						
							| 2 |  | fltltc.b |  |-  ( ph -> B e. NN ) | 
						
							| 3 |  | fltltc.c |  |-  ( ph -> C e. NN ) | 
						
							| 4 |  | fltltc.n |  |-  ( ph -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 5 |  | fltltc.1 |  |-  ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) | 
						
							| 6 | 3 | nnred |  |-  ( ph -> C e. RR ) | 
						
							| 7 |  | eluzge3nn |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. NN ) | 
						
							| 8 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 9 | 4 7 8 | 3syl |  |-  ( ph -> ( N - 1 ) e. NN0 ) | 
						
							| 10 | 6 9 | reexpcld |  |-  ( ph -> ( C ^ ( N - 1 ) ) e. RR ) | 
						
							| 11 | 9 | nn0red |  |-  ( ph -> ( N - 1 ) e. RR ) | 
						
							| 12 | 2 | nnred |  |-  ( ph -> B e. RR ) | 
						
							| 13 | 12 9 | reexpcld |  |-  ( ph -> ( B ^ ( N - 1 ) ) e. RR ) | 
						
							| 14 | 11 13 | remulcld |  |-  ( ph -> ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) e. RR ) | 
						
							| 15 | 10 14 | readdcld |  |-  ( ph -> ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) e. RR ) | 
						
							| 16 |  | fzofi |  |-  ( 0 ..^ N ) e. Fin | 
						
							| 17 | 16 | a1i |  |-  ( ph -> ( 0 ..^ N ) e. Fin ) | 
						
							| 18 | 6 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> C e. RR ) | 
						
							| 19 |  | elfzonn0 |  |-  ( k e. ( 0 ..^ N ) -> k e. NN0 ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. NN0 ) | 
						
							| 21 | 18 20 | reexpcld |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( C ^ k ) e. RR ) | 
						
							| 22 | 12 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> B e. RR ) | 
						
							| 23 |  | fzonnsub |  |-  ( k e. ( 0 ..^ N ) -> ( N - k ) e. NN ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( N - k ) e. NN ) | 
						
							| 25 |  | nnm1nn0 |  |-  ( ( N - k ) e. NN -> ( ( N - k ) - 1 ) e. NN0 ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( N - k ) - 1 ) e. NN0 ) | 
						
							| 27 | 22 26 | reexpcld |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( B ^ ( ( N - k ) - 1 ) ) e. RR ) | 
						
							| 28 | 21 27 | remulcld |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) e. RR ) | 
						
							| 29 | 17 28 | fsumrecl |  |-  ( ph -> sum_ k e. ( 0 ..^ N ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) e. RR ) | 
						
							| 30 | 1 2 3 4 5 | fltltc |  |-  ( ph -> B < C ) | 
						
							| 31 |  | difrp |  |-  ( ( B e. RR /\ C e. RR ) -> ( B < C <-> ( C - B ) e. RR+ ) ) | 
						
							| 32 | 12 6 31 | syl2anc |  |-  ( ph -> ( B < C <-> ( C - B ) e. RR+ ) ) | 
						
							| 33 | 30 32 | mpbid |  |-  ( ph -> ( C - B ) e. RR+ ) | 
						
							| 34 |  | fzofi |  |-  ( 0 ..^ ( N - 1 ) ) e. Fin | 
						
							| 35 | 34 | a1i |  |-  ( ph -> ( 0 ..^ ( N - 1 ) ) e. Fin ) | 
						
							| 36 | 6 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> C e. RR ) | 
						
							| 37 |  | elfzonn0 |  |-  ( k e. ( 0 ..^ ( N - 1 ) ) -> k e. NN0 ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> k e. NN0 ) | 
						
							| 39 | 36 38 | reexpcld |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( C ^ k ) e. RR ) | 
						
							| 40 | 12 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> B e. RR ) | 
						
							| 41 |  | fzonnsub |  |-  ( k e. ( 0 ..^ ( N - 1 ) ) -> ( ( N - 1 ) - k ) e. NN ) | 
						
							| 42 | 41 | nnnn0d |  |-  ( k e. ( 0 ..^ ( N - 1 ) ) -> ( ( N - 1 ) - k ) e. NN0 ) | 
						
							| 43 | 42 | adantl |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( N - 1 ) - k ) e. NN0 ) | 
						
							| 44 | 40 43 | reexpcld |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( B ^ ( ( N - 1 ) - k ) ) e. RR ) | 
						
							| 45 | 39 44 | remulcld |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) e. RR ) | 
						
							| 46 | 35 45 | fsumrecl |  |-  ( ph -> sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) e. RR ) | 
						
							| 47 |  | fzofi |  |-  ( 0 ..^ ( ( N - 1 ) - 1 ) ) e. Fin | 
						
							| 48 | 47 | a1i |  |-  ( ph -> ( 0 ..^ ( ( N - 1 ) - 1 ) ) e. Fin ) | 
						
							| 49 | 12 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> B e. RR ) | 
						
							| 50 |  | elfzonn0 |  |-  ( k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) -> k e. NN0 ) | 
						
							| 51 | 50 | adantl |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> k e. NN0 ) | 
						
							| 52 | 49 51 | reexpcld |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( B ^ k ) e. RR ) | 
						
							| 53 |  | simpr |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) | 
						
							| 54 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 55 |  | elfzoext |  |-  ( ( k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) /\ 1 e. NN0 ) -> k e. ( 0 ..^ ( ( ( N - 1 ) - 1 ) + 1 ) ) ) | 
						
							| 56 | 53 54 55 | sylancl |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> k e. ( 0 ..^ ( ( ( N - 1 ) - 1 ) + 1 ) ) ) | 
						
							| 57 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 58 | 4 7 57 | 3syl |  |-  ( ph -> N e. NN0 ) | 
						
							| 59 | 58 | nn0cnd |  |-  ( ph -> N e. CC ) | 
						
							| 60 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 61 | 59 60 | subcld |  |-  ( ph -> ( N - 1 ) e. CC ) | 
						
							| 62 | 61 60 | npcand |  |-  ( ph -> ( ( ( N - 1 ) - 1 ) + 1 ) = ( N - 1 ) ) | 
						
							| 63 | 62 | oveq2d |  |-  ( ph -> ( 0 ..^ ( ( ( N - 1 ) - 1 ) + 1 ) ) = ( 0 ..^ ( N - 1 ) ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( 0 ..^ ( ( ( N - 1 ) - 1 ) + 1 ) ) = ( 0 ..^ ( N - 1 ) ) ) | 
						
							| 65 | 56 64 | eleqtrd |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> k e. ( 0 ..^ ( N - 1 ) ) ) | 
						
							| 66 | 65 42 | syl |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( ( N - 1 ) - k ) e. NN0 ) | 
						
							| 67 | 49 66 | reexpcld |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( B ^ ( ( N - 1 ) - k ) ) e. RR ) | 
						
							| 68 | 52 67 | remulcld |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) e. RR ) | 
						
							| 69 | 48 68 | fsumrecl |  |-  ( ph -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) e. RR ) | 
						
							| 70 |  | sub1m1 |  |-  ( N e. CC -> ( ( N - 1 ) - 1 ) = ( N - 2 ) ) | 
						
							| 71 | 59 70 | syl |  |-  ( ph -> ( ( N - 1 ) - 1 ) = ( N - 2 ) ) | 
						
							| 72 |  | uz3m2nn |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN ) | 
						
							| 73 | 4 72 | syl |  |-  ( ph -> ( N - 2 ) e. NN ) | 
						
							| 74 | 71 73 | eqeltrd |  |-  ( ph -> ( ( N - 1 ) - 1 ) e. NN ) | 
						
							| 75 | 74 | nnnn0d |  |-  ( ph -> ( ( N - 1 ) - 1 ) e. NN0 ) | 
						
							| 76 | 12 75 | reexpcld |  |-  ( ph -> ( B ^ ( ( N - 1 ) - 1 ) ) e. RR ) | 
						
							| 77 | 76 12 | remulcld |  |-  ( ph -> ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) e. RR ) | 
						
							| 78 | 69 77 | readdcld |  |-  ( ph -> ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) e. RR ) | 
						
							| 79 | 6 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> C e. RR ) | 
						
							| 80 | 79 51 | reexpcld |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( C ^ k ) e. RR ) | 
						
							| 81 | 80 67 | remulcld |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) e. RR ) | 
						
							| 82 | 48 81 | fsumrecl |  |-  ( ph -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) e. RR ) | 
						
							| 83 | 6 75 | reexpcld |  |-  ( ph -> ( C ^ ( ( N - 1 ) - 1 ) ) e. RR ) | 
						
							| 84 | 83 12 | remulcld |  |-  ( ph -> ( ( C ^ ( ( N - 1 ) - 1 ) ) x. B ) e. RR ) | 
						
							| 85 | 82 84 | readdcld |  |-  ( ph -> ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( C ^ ( ( N - 1 ) - 1 ) ) x. B ) ) e. RR ) | 
						
							| 86 | 2 | nncnd |  |-  ( ph -> B e. CC ) | 
						
							| 87 |  | uzuzle23 |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 88 | 4 87 | syl |  |-  ( ph -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 89 |  | uz2m1nn |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) | 
						
							| 90 | 88 89 | syl |  |-  ( ph -> ( N - 1 ) e. NN ) | 
						
							| 91 |  | expm1t |  |-  ( ( B e. CC /\ ( N - 1 ) e. NN ) -> ( B ^ ( N - 1 ) ) = ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) | 
						
							| 92 | 86 90 91 | syl2anc |  |-  ( ph -> ( B ^ ( N - 1 ) ) = ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) | 
						
							| 93 | 92 | eqcomd |  |-  ( ph -> ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) = ( B ^ ( N - 1 ) ) ) | 
						
							| 94 | 93 | oveq2d |  |-  ( ph -> ( ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) + ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) = ( ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) + ( B ^ ( N - 1 ) ) ) ) | 
						
							| 95 | 61 60 | subcld |  |-  ( ph -> ( ( N - 1 ) - 1 ) e. CC ) | 
						
							| 96 | 86 9 | expcld |  |-  ( ph -> ( B ^ ( N - 1 ) ) e. CC ) | 
						
							| 97 | 95 96 | adddirp1d |  |-  ( ph -> ( ( ( ( N - 1 ) - 1 ) + 1 ) x. ( B ^ ( N - 1 ) ) ) = ( ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) + ( B ^ ( N - 1 ) ) ) ) | 
						
							| 98 | 62 | oveq1d |  |-  ( ph -> ( ( ( ( N - 1 ) - 1 ) + 1 ) x. ( B ^ ( N - 1 ) ) ) = ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) | 
						
							| 99 | 94 97 98 | 3eqtr2rd |  |-  ( ph -> ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) = ( ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) + ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) ) | 
						
							| 100 | 14 99 | eqled |  |-  ( ph -> ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) <_ ( ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) + ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) ) | 
						
							| 101 | 37 | nn0cnd |  |-  ( k e. ( 0 ..^ ( N - 1 ) ) -> k e. CC ) | 
						
							| 102 | 65 101 | syl |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> k e. CC ) | 
						
							| 103 | 61 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( N - 1 ) e. CC ) | 
						
							| 104 | 102 103 | pncan3d |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( k + ( ( N - 1 ) - k ) ) = ( N - 1 ) ) | 
						
							| 105 | 104 | oveq2d |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( B ^ ( k + ( ( N - 1 ) - k ) ) ) = ( B ^ ( N - 1 ) ) ) | 
						
							| 106 | 105 | sumeq2dv |  |-  ( ph -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( B ^ ( k + ( ( N - 1 ) - k ) ) ) = sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( B ^ ( N - 1 ) ) ) | 
						
							| 107 | 86 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> B e. CC ) | 
						
							| 108 | 107 66 51 | expaddd |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( B ^ ( k + ( ( N - 1 ) - k ) ) ) = ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) | 
						
							| 109 | 108 | sumeq2dv |  |-  ( ph -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( B ^ ( k + ( ( N - 1 ) - k ) ) ) = sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) | 
						
							| 110 |  | fsumconst |  |-  ( ( ( 0 ..^ ( ( N - 1 ) - 1 ) ) e. Fin /\ ( B ^ ( N - 1 ) ) e. CC ) -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( B ^ ( N - 1 ) ) = ( ( # ` ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) x. ( B ^ ( N - 1 ) ) ) ) | 
						
							| 111 | 48 96 110 | syl2anc |  |-  ( ph -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( B ^ ( N - 1 ) ) = ( ( # ` ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) x. ( B ^ ( N - 1 ) ) ) ) | 
						
							| 112 |  | hashfzo0 |  |-  ( ( ( N - 1 ) - 1 ) e. NN0 -> ( # ` ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) = ( ( N - 1 ) - 1 ) ) | 
						
							| 113 | 75 112 | syl |  |-  ( ph -> ( # ` ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) = ( ( N - 1 ) - 1 ) ) | 
						
							| 114 | 113 | oveq1d |  |-  ( ph -> ( ( # ` ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) x. ( B ^ ( N - 1 ) ) ) = ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) ) | 
						
							| 115 | 111 114 | eqtrd |  |-  ( ph -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( B ^ ( N - 1 ) ) = ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) ) | 
						
							| 116 | 106 109 115 | 3eqtr3d |  |-  ( ph -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) = ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) ) | 
						
							| 117 | 116 | oveq1d |  |-  ( ph -> ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) = ( ( ( ( N - 1 ) - 1 ) x. ( B ^ ( N - 1 ) ) ) + ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) ) | 
						
							| 118 | 100 117 | breqtrrd |  |-  ( ph -> ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) <_ ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) ) | 
						
							| 119 | 2 | nnrpd |  |-  ( ph -> B e. RR+ ) | 
						
							| 120 | 119 | rpge0d |  |-  ( ph -> 0 <_ B ) | 
						
							| 121 | 120 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> 0 <_ B ) | 
						
							| 122 | 49 66 121 | expge0d |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> 0 <_ ( B ^ ( ( N - 1 ) - k ) ) ) | 
						
							| 123 | 12 6 30 | ltled |  |-  ( ph -> B <_ C ) | 
						
							| 124 | 123 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> B <_ C ) | 
						
							| 125 |  | leexp1a |  |-  ( ( ( B e. RR /\ C e. RR /\ k e. NN0 ) /\ ( 0 <_ B /\ B <_ C ) ) -> ( B ^ k ) <_ ( C ^ k ) ) | 
						
							| 126 | 49 79 51 121 124 125 | syl32anc |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( B ^ k ) <_ ( C ^ k ) ) | 
						
							| 127 | 52 80 67 122 126 | lemul1ad |  |-  ( ( ph /\ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ) -> ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) <_ ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) | 
						
							| 128 | 48 68 81 127 | fsumle |  |-  ( ph -> sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) <_ sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) | 
						
							| 129 | 3 | nnrpd |  |-  ( ph -> C e. RR+ ) | 
						
							| 130 | 119 129 74 30 | ltexp1dd |  |-  ( ph -> ( B ^ ( ( N - 1 ) - 1 ) ) < ( C ^ ( ( N - 1 ) - 1 ) ) ) | 
						
							| 131 | 76 83 119 130 | ltmul1dd |  |-  ( ph -> ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) < ( ( C ^ ( ( N - 1 ) - 1 ) ) x. B ) ) | 
						
							| 132 | 69 77 82 84 128 131 | leltaddd |  |-  ( ph -> ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( B ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( B ^ ( ( N - 1 ) - 1 ) ) x. B ) ) < ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( C ^ ( ( N - 1 ) - 1 ) ) x. B ) ) ) | 
						
							| 133 | 14 78 85 118 132 | lelttrd |  |-  ( ph -> ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) < ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( C ^ ( ( N - 1 ) - 1 ) ) x. B ) ) ) | 
						
							| 134 | 61 60 | nncand |  |-  ( ph -> ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) = 1 ) | 
						
							| 135 | 134 | oveq2d |  |-  ( ph -> ( B ^ ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) = ( B ^ 1 ) ) | 
						
							| 136 | 86 | exp1d |  |-  ( ph -> ( B ^ 1 ) = B ) | 
						
							| 137 | 135 136 | eqtrd |  |-  ( ph -> ( B ^ ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) = B ) | 
						
							| 138 | 137 | oveq2d |  |-  ( ph -> ( ( C ^ ( ( N - 1 ) - 1 ) ) x. ( B ^ ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) ) = ( ( C ^ ( ( N - 1 ) - 1 ) ) x. B ) ) | 
						
							| 139 | 138 | oveq2d |  |-  ( ph -> ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( C ^ ( ( N - 1 ) - 1 ) ) x. ( B ^ ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) ) ) = ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( C ^ ( ( N - 1 ) - 1 ) ) x. B ) ) ) | 
						
							| 140 | 133 139 | breqtrrd |  |-  ( ph -> ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) < ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( C ^ ( ( N - 1 ) - 1 ) ) x. ( B ^ ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) ) ) ) | 
						
							| 141 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 142 | 141 | peano2zd |  |-  ( ph -> ( 0 + 1 ) e. ZZ ) | 
						
							| 143 |  | 0cn |  |-  0 e. CC | 
						
							| 144 |  | ax-1cn |  |-  1 e. CC | 
						
							| 145 | 143 144 144 | addassi |  |-  ( ( 0 + 1 ) + 1 ) = ( 0 + ( 1 + 1 ) ) | 
						
							| 146 | 144 144 | addcli |  |-  ( 1 + 1 ) e. CC | 
						
							| 147 | 146 | addlidi |  |-  ( 0 + ( 1 + 1 ) ) = ( 1 + 1 ) | 
						
							| 148 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 149 | 145 147 148 | 3eqtri |  |-  ( ( 0 + 1 ) + 1 ) = 2 | 
						
							| 150 | 149 | a1i |  |-  ( ph -> ( ( 0 + 1 ) + 1 ) = 2 ) | 
						
							| 151 | 150 | fveq2d |  |-  ( ph -> ( ZZ>= ` ( ( 0 + 1 ) + 1 ) ) = ( ZZ>= ` 2 ) ) | 
						
							| 152 | 88 151 | eleqtrrd |  |-  ( ph -> N e. ( ZZ>= ` ( ( 0 + 1 ) + 1 ) ) ) | 
						
							| 153 |  | eluzp1m1 |  |-  ( ( ( 0 + 1 ) e. ZZ /\ N e. ( ZZ>= ` ( ( 0 + 1 ) + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` ( 0 + 1 ) ) ) | 
						
							| 154 | 142 152 153 | syl2anc |  |-  ( ph -> ( N - 1 ) e. ( ZZ>= ` ( 0 + 1 ) ) ) | 
						
							| 155 |  | eluzp1m1 |  |-  ( ( 0 e. ZZ /\ ( N - 1 ) e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( ( N - 1 ) - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 156 | 141 154 155 | syl2anc |  |-  ( ph -> ( ( N - 1 ) - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 157 | 3 | nncnd |  |-  ( ph -> C e. CC ) | 
						
							| 158 | 157 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> C e. CC ) | 
						
							| 159 | 158 38 | expcld |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( C ^ k ) e. CC ) | 
						
							| 160 | 86 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> B e. CC ) | 
						
							| 161 | 160 43 | expcld |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( B ^ ( ( N - 1 ) - k ) ) e. CC ) | 
						
							| 162 | 159 161 | mulcld |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) e. CC ) | 
						
							| 163 |  | oveq2 |  |-  ( k = ( ( N - 1 ) - 1 ) -> ( C ^ k ) = ( C ^ ( ( N - 1 ) - 1 ) ) ) | 
						
							| 164 |  | oveq2 |  |-  ( k = ( ( N - 1 ) - 1 ) -> ( ( N - 1 ) - k ) = ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) | 
						
							| 165 | 164 | oveq2d |  |-  ( k = ( ( N - 1 ) - 1 ) -> ( B ^ ( ( N - 1 ) - k ) ) = ( B ^ ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) ) | 
						
							| 166 | 163 165 | oveq12d |  |-  ( k = ( ( N - 1 ) - 1 ) -> ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) = ( ( C ^ ( ( N - 1 ) - 1 ) ) x. ( B ^ ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) ) ) | 
						
							| 167 | 9 | nn0zd |  |-  ( ph -> ( N - 1 ) e. ZZ ) | 
						
							| 168 | 156 162 166 167 | fzosumm1 |  |-  ( ph -> sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) = ( sum_ k e. ( 0 ..^ ( ( N - 1 ) - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( ( C ^ ( ( N - 1 ) - 1 ) ) x. ( B ^ ( ( N - 1 ) - ( ( N - 1 ) - 1 ) ) ) ) ) ) | 
						
							| 169 | 140 168 | breqtrrd |  |-  ( ph -> ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) < sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) | 
						
							| 170 | 14 46 10 169 | ltadd2dd |  |-  ( ph -> ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) < ( ( C ^ ( N - 1 ) ) + sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) ) | 
						
							| 171 | 35 162 | fsumcl |  |-  ( ph -> sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) e. CC ) | 
						
							| 172 | 157 9 | expcld |  |-  ( ph -> ( C ^ ( N - 1 ) ) e. CC ) | 
						
							| 173 | 171 172 | addcomd |  |-  ( ph -> ( sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( C ^ ( N - 1 ) ) ) = ( ( C ^ ( N - 1 ) ) + sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) ) | 
						
							| 174 | 170 173 | breqtrrd |  |-  ( ph -> ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) < ( sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( C ^ ( N - 1 ) ) ) ) | 
						
							| 175 | 59 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> N e. CC ) | 
						
							| 176 | 101 | adantl |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> k e. CC ) | 
						
							| 177 |  | 1cnd |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> 1 e. CC ) | 
						
							| 178 | 175 176 177 | sub32d |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( N - k ) - 1 ) = ( ( N - 1 ) - k ) ) | 
						
							| 179 | 178 | oveq2d |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( B ^ ( ( N - k ) - 1 ) ) = ( B ^ ( ( N - 1 ) - k ) ) ) | 
						
							| 180 | 179 | oveq2d |  |-  ( ( ph /\ k e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) | 
						
							| 181 | 180 | sumeq2dv |  |-  ( ph -> sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) ) | 
						
							| 182 | 59 59 60 | nnncand |  |-  ( ph -> ( ( N - ( N - 1 ) ) - 1 ) = ( N - N ) ) | 
						
							| 183 | 59 | subidd |  |-  ( ph -> ( N - N ) = 0 ) | 
						
							| 184 | 182 183 | eqtrd |  |-  ( ph -> ( ( N - ( N - 1 ) ) - 1 ) = 0 ) | 
						
							| 185 | 184 | oveq2d |  |-  ( ph -> ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) = ( B ^ 0 ) ) | 
						
							| 186 | 86 | exp0d |  |-  ( ph -> ( B ^ 0 ) = 1 ) | 
						
							| 187 | 185 186 | eqtrd |  |-  ( ph -> ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) = 1 ) | 
						
							| 188 | 187 | oveq2d |  |-  ( ph -> ( ( C ^ ( N - 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) = ( ( C ^ ( N - 1 ) ) x. 1 ) ) | 
						
							| 189 | 10 | recnd |  |-  ( ph -> ( C ^ ( N - 1 ) ) e. CC ) | 
						
							| 190 | 189 | mulridd |  |-  ( ph -> ( ( C ^ ( N - 1 ) ) x. 1 ) = ( C ^ ( N - 1 ) ) ) | 
						
							| 191 | 188 190 | eqtrd |  |-  ( ph -> ( ( C ^ ( N - 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) = ( C ^ ( N - 1 ) ) ) | 
						
							| 192 | 181 191 | oveq12d |  |-  ( ph -> ( sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( C ^ ( N - 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) = ( sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - 1 ) - k ) ) ) + ( C ^ ( N - 1 ) ) ) ) | 
						
							| 193 | 174 192 | breqtrrd |  |-  ( ph -> ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) < ( sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( C ^ ( N - 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) ) | 
						
							| 194 |  | elnn0uz |  |-  ( ( N - 1 ) e. NN0 <-> ( N - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 195 | 9 194 | sylib |  |-  ( ph -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 196 | 157 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> C e. CC ) | 
						
							| 197 | 196 20 | expcld |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( C ^ k ) e. CC ) | 
						
							| 198 | 86 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> B e. CC ) | 
						
							| 199 | 198 26 | expcld |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( B ^ ( ( N - k ) - 1 ) ) e. CC ) | 
						
							| 200 | 197 199 | mulcld |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) e. CC ) | 
						
							| 201 |  | oveq2 |  |-  ( k = ( N - 1 ) -> ( C ^ k ) = ( C ^ ( N - 1 ) ) ) | 
						
							| 202 |  | oveq2 |  |-  ( k = ( N - 1 ) -> ( N - k ) = ( N - ( N - 1 ) ) ) | 
						
							| 203 | 202 | oveq1d |  |-  ( k = ( N - 1 ) -> ( ( N - k ) - 1 ) = ( ( N - ( N - 1 ) ) - 1 ) ) | 
						
							| 204 | 203 | oveq2d |  |-  ( k = ( N - 1 ) -> ( B ^ ( ( N - k ) - 1 ) ) = ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) | 
						
							| 205 | 201 204 | oveq12d |  |-  ( k = ( N - 1 ) -> ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( ( C ^ ( N - 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) | 
						
							| 206 | 58 | nn0zd |  |-  ( ph -> N e. ZZ ) | 
						
							| 207 | 195 200 205 206 | fzosumm1 |  |-  ( ph -> sum_ k e. ( 0 ..^ N ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( sum_ k e. ( 0 ..^ ( N - 1 ) ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( C ^ ( N - 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) ) | 
						
							| 208 | 193 207 | breqtrrd |  |-  ( ph -> ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) < sum_ k e. ( 0 ..^ N ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) | 
						
							| 209 | 15 29 33 208 | ltmul2dd |  |-  ( ph -> ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) < ( ( C - B ) x. sum_ k e. ( 0 ..^ N ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) | 
						
							| 210 |  | pwdif |  |-  ( ( N e. NN0 /\ C e. CC /\ B e. CC ) -> ( ( C ^ N ) - ( B ^ N ) ) = ( ( C - B ) x. sum_ k e. ( 0 ..^ N ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) | 
						
							| 211 | 58 157 86 210 | syl3anc |  |-  ( ph -> ( ( C ^ N ) - ( B ^ N ) ) = ( ( C - B ) x. sum_ k e. ( 0 ..^ N ) ( ( C ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) | 
						
							| 212 | 209 211 | breqtrrd |  |-  ( ph -> ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) < ( ( C ^ N ) - ( B ^ N ) ) ) | 
						
							| 213 | 1 | nncnd |  |-  ( ph -> A e. CC ) | 
						
							| 214 | 213 58 | expcld |  |-  ( ph -> ( A ^ N ) e. CC ) | 
						
							| 215 | 86 58 | expcld |  |-  ( ph -> ( B ^ N ) e. CC ) | 
						
							| 216 | 214 215 5 | mvlraddd |  |-  ( ph -> ( A ^ N ) = ( ( C ^ N ) - ( B ^ N ) ) ) | 
						
							| 217 | 212 216 | breqtrrd |  |-  ( ph -> ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) < ( A ^ N ) ) |