Metamath Proof Explorer


Theorem fltnltalem

Description: Lemma for fltnlta . A lower bound for A based on pwdif . (Contributed by Steven Nguyen, 22-Aug-2023)

Ref Expression
Hypotheses fltltc.a φ A
fltltc.b φ B
fltltc.c φ C
fltltc.n φ N 3
fltltc.1 φ A N + B N = C N
Assertion fltnltalem φ C B C N 1 + N 1 B N 1 < A N

Proof

Step Hyp Ref Expression
1 fltltc.a φ A
2 fltltc.b φ B
3 fltltc.c φ C
4 fltltc.n φ N 3
5 fltltc.1 φ A N + B N = C N
6 3 nnred φ C
7 eluzge3nn N 3 N
8 nnm1nn0 N N 1 0
9 4 7 8 3syl φ N 1 0
10 6 9 reexpcld φ C N 1
11 9 nn0red φ N 1
12 2 nnred φ B
13 12 9 reexpcld φ B N 1
14 11 13 remulcld φ N 1 B N 1
15 10 14 readdcld φ C N 1 + N 1 B N 1
16 fzofi 0 ..^ N Fin
17 16 a1i φ 0 ..^ N Fin
18 6 adantr φ k 0 ..^ N C
19 elfzonn0 k 0 ..^ N k 0
20 19 adantl φ k 0 ..^ N k 0
21 18 20 reexpcld φ k 0 ..^ N C k
22 12 adantr φ k 0 ..^ N B
23 fzonnsub k 0 ..^ N N k
24 23 adantl φ k 0 ..^ N N k
25 nnm1nn0 N k N - k - 1 0
26 24 25 syl φ k 0 ..^ N N - k - 1 0
27 22 26 reexpcld φ k 0 ..^ N B N - k - 1
28 21 27 remulcld φ k 0 ..^ N C k B N - k - 1
29 17 28 fsumrecl φ k 0 ..^ N C k B N - k - 1
30 1 2 3 4 5 fltltc φ B < C
31 difrp B C B < C C B +
32 12 6 31 syl2anc φ B < C C B +
33 30 32 mpbid φ C B +
34 fzofi 0 ..^ N 1 Fin
35 34 a1i φ 0 ..^ N 1 Fin
36 6 adantr φ k 0 ..^ N 1 C
37 elfzonn0 k 0 ..^ N 1 k 0
38 37 adantl φ k 0 ..^ N 1 k 0
39 36 38 reexpcld φ k 0 ..^ N 1 C k
40 12 adantr φ k 0 ..^ N 1 B
41 fzonnsub k 0 ..^ N 1 N - 1 - k
42 41 nnnn0d k 0 ..^ N 1 N - 1 - k 0
43 42 adantl φ k 0 ..^ N 1 N - 1 - k 0
44 40 43 reexpcld φ k 0 ..^ N 1 B N - 1 - k
45 39 44 remulcld φ k 0 ..^ N 1 C k B N - 1 - k
46 35 45 fsumrecl φ k 0 ..^ N 1 C k B N - 1 - k
47 fzofi 0 ..^ N - 1 - 1 Fin
48 47 a1i φ 0 ..^ N - 1 - 1 Fin
49 12 adantr φ k 0 ..^ N - 1 - 1 B
50 elfzonn0 k 0 ..^ N - 1 - 1 k 0
51 50 adantl φ k 0 ..^ N - 1 - 1 k 0
52 49 51 reexpcld φ k 0 ..^ N - 1 - 1 B k
53 simpr φ k 0 ..^ N - 1 - 1 k 0 ..^ N - 1 - 1
54 1nn0 1 0
55 elfzoext k 0 ..^ N - 1 - 1 1 0 k 0 ..^ N 1 - 1 + 1
56 53 54 55 sylancl φ k 0 ..^ N - 1 - 1 k 0 ..^ N 1 - 1 + 1
57 nnnn0 N N 0
58 4 7 57 3syl φ N 0
59 58 nn0cnd φ N
60 1cnd φ 1
61 59 60 subcld φ N 1
62 61 60 npcand φ N 1 - 1 + 1 = N 1
63 62 oveq2d φ 0 ..^ N 1 - 1 + 1 = 0 ..^ N 1
64 63 adantr φ k 0 ..^ N - 1 - 1 0 ..^ N 1 - 1 + 1 = 0 ..^ N 1
65 56 64 eleqtrd φ k 0 ..^ N - 1 - 1 k 0 ..^ N 1
66 65 42 syl φ k 0 ..^ N - 1 - 1 N - 1 - k 0
67 49 66 reexpcld φ k 0 ..^ N - 1 - 1 B N - 1 - k
68 52 67 remulcld φ k 0 ..^ N - 1 - 1 B k B N - 1 - k
69 48 68 fsumrecl φ k 0 ..^ N - 1 - 1 B k B N - 1 - k
70 sub1m1 N N - 1 - 1 = N 2
71 59 70 syl φ N - 1 - 1 = N 2
72 uz3m2nn N 3 N 2
73 4 72 syl φ N 2
74 71 73 eqeltrd φ N - 1 - 1
75 74 nnnn0d φ N - 1 - 1 0
76 12 75 reexpcld φ B N - 1 - 1
77 76 12 remulcld φ B N - 1 - 1 B
78 69 77 readdcld φ k 0 ..^ N - 1 - 1 B k B N - 1 - k + B N - 1 - 1 B
79 6 adantr φ k 0 ..^ N - 1 - 1 C
80 79 51 reexpcld φ k 0 ..^ N - 1 - 1 C k
81 80 67 remulcld φ k 0 ..^ N - 1 - 1 C k B N - 1 - k
82 48 81 fsumrecl φ k 0 ..^ N - 1 - 1 C k B N - 1 - k
83 6 75 reexpcld φ C N - 1 - 1
84 83 12 remulcld φ C N - 1 - 1 B
85 82 84 readdcld φ k 0 ..^ N - 1 - 1 C k B N - 1 - k + C N - 1 - 1 B
86 2 nncnd φ B
87 uzuzle23 N 3 N 2
88 4 87 syl φ N 2
89 uz2m1nn N 2 N 1
90 88 89 syl φ N 1
91 expm1t B N 1 B N 1 = B N - 1 - 1 B
92 86 90 91 syl2anc φ B N 1 = B N - 1 - 1 B
93 92 eqcomd φ B N - 1 - 1 B = B N 1
94 93 oveq2d φ N - 1 - 1 B N 1 + B N - 1 - 1 B = N - 1 - 1 B N 1 + B N 1
95 61 60 subcld φ N - 1 - 1
96 86 9 expcld φ B N 1
97 95 96 adddirp1d φ N 1 - 1 + 1 B N 1 = N - 1 - 1 B N 1 + B N 1
98 62 oveq1d φ N 1 - 1 + 1 B N 1 = N 1 B N 1
99 94 97 98 3eqtr2rd φ N 1 B N 1 = N - 1 - 1 B N 1 + B N - 1 - 1 B
100 14 99 eqled φ N 1 B N 1 N - 1 - 1 B N 1 + B N - 1 - 1 B
101 37 nn0cnd k 0 ..^ N 1 k
102 65 101 syl φ k 0 ..^ N - 1 - 1 k
103 61 adantr φ k 0 ..^ N - 1 - 1 N 1
104 102 103 pncan3d φ k 0 ..^ N - 1 - 1 k + N 1 - k = N 1
105 104 oveq2d φ k 0 ..^ N - 1 - 1 B k + N 1 - k = B N 1
106 105 sumeq2dv φ k 0 ..^ N - 1 - 1 B k + N 1 - k = k 0 ..^ N - 1 - 1 B N 1
107 86 adantr φ k 0 ..^ N - 1 - 1 B
108 107 66 51 expaddd φ k 0 ..^ N - 1 - 1 B k + N 1 - k = B k B N - 1 - k
109 108 sumeq2dv φ k 0 ..^ N - 1 - 1 B k + N 1 - k = k 0 ..^ N - 1 - 1 B k B N - 1 - k
110 fsumconst 0 ..^ N - 1 - 1 Fin B N 1 k 0 ..^ N - 1 - 1 B N 1 = 0 ..^ N - 1 - 1 B N 1
111 48 96 110 syl2anc φ k 0 ..^ N - 1 - 1 B N 1 = 0 ..^ N - 1 - 1 B N 1
112 hashfzo0 N - 1 - 1 0 0 ..^ N - 1 - 1 = N - 1 - 1
113 75 112 syl φ 0 ..^ N - 1 - 1 = N - 1 - 1
114 113 oveq1d φ 0 ..^ N - 1 - 1 B N 1 = N - 1 - 1 B N 1
115 111 114 eqtrd φ k 0 ..^ N - 1 - 1 B N 1 = N - 1 - 1 B N 1
116 106 109 115 3eqtr3d φ k 0 ..^ N - 1 - 1 B k B N - 1 - k = N - 1 - 1 B N 1
117 116 oveq1d φ k 0 ..^ N - 1 - 1 B k B N - 1 - k + B N - 1 - 1 B = N - 1 - 1 B N 1 + B N - 1 - 1 B
118 100 117 breqtrrd φ N 1 B N 1 k 0 ..^ N - 1 - 1 B k B N - 1 - k + B N - 1 - 1 B
119 2 nnrpd φ B +
120 119 rpge0d φ 0 B
121 120 adantr φ k 0 ..^ N - 1 - 1 0 B
122 49 66 121 expge0d φ k 0 ..^ N - 1 - 1 0 B N - 1 - k
123 12 6 30 ltled φ B C
124 123 adantr φ k 0 ..^ N - 1 - 1 B C
125 leexp1a B C k 0 0 B B C B k C k
126 49 79 51 121 124 125 syl32anc φ k 0 ..^ N - 1 - 1 B k C k
127 52 80 67 122 126 lemul1ad φ k 0 ..^ N - 1 - 1 B k B N - 1 - k C k B N - 1 - k
128 48 68 81 127 fsumle φ k 0 ..^ N - 1 - 1 B k B N - 1 - k k 0 ..^ N - 1 - 1 C k B N - 1 - k
129 3 nnrpd φ C +
130 119 129 74 30 ltexp1dd φ B N - 1 - 1 < C N - 1 - 1
131 76 83 119 130 ltmul1dd φ B N - 1 - 1 B < C N - 1 - 1 B
132 69 77 82 84 128 131 leltaddd φ k 0 ..^ N - 1 - 1 B k B N - 1 - k + B N - 1 - 1 B < k 0 ..^ N - 1 - 1 C k B N - 1 - k + C N - 1 - 1 B
133 14 78 85 118 132 lelttrd φ N 1 B N 1 < k 0 ..^ N - 1 - 1 C k B N - 1 - k + C N - 1 - 1 B
134 61 60 nncand φ N - 1 - N - 1 - 1 = 1
135 134 oveq2d φ B N - 1 - N - 1 - 1 = B 1
136 86 exp1d φ B 1 = B
137 135 136 eqtrd φ B N - 1 - N - 1 - 1 = B
138 137 oveq2d φ C N - 1 - 1 B N - 1 - N - 1 - 1 = C N - 1 - 1 B
139 138 oveq2d φ k 0 ..^ N - 1 - 1 C k B N - 1 - k + C N - 1 - 1 B N - 1 - N - 1 - 1 = k 0 ..^ N - 1 - 1 C k B N - 1 - k + C N - 1 - 1 B
140 133 139 breqtrrd φ N 1 B N 1 < k 0 ..^ N - 1 - 1 C k B N - 1 - k + C N - 1 - 1 B N - 1 - N - 1 - 1
141 0zd φ 0
142 141 peano2zd φ 0 + 1
143 0cn 0
144 ax-1cn 1
145 143 144 144 addassi 0 + 1 + 1 = 0 + 1 + 1
146 144 144 addcli 1 + 1
147 146 addid2i 0 + 1 + 1 = 1 + 1
148 1p1e2 1 + 1 = 2
149 145 147 148 3eqtri 0 + 1 + 1 = 2
150 149 a1i φ 0 + 1 + 1 = 2
151 150 fveq2d φ 0 + 1 + 1 = 2
152 88 151 eleqtrrd φ N 0 + 1 + 1
153 eluzp1m1 0 + 1 N 0 + 1 + 1 N 1 0 + 1
154 142 152 153 syl2anc φ N 1 0 + 1
155 eluzp1m1 0 N 1 0 + 1 N - 1 - 1 0
156 141 154 155 syl2anc φ N - 1 - 1 0
157 3 nncnd φ C
158 157 adantr φ k 0 ..^ N 1 C
159 158 38 expcld φ k 0 ..^ N 1 C k
160 86 adantr φ k 0 ..^ N 1 B
161 160 43 expcld φ k 0 ..^ N 1 B N - 1 - k
162 159 161 mulcld φ k 0 ..^ N 1 C k B N - 1 - k
163 oveq2 k = N - 1 - 1 C k = C N - 1 - 1
164 oveq2 k = N - 1 - 1 N - 1 - k = N - 1 - N - 1 - 1
165 164 oveq2d k = N - 1 - 1 B N - 1 - k = B N - 1 - N - 1 - 1
166 163 165 oveq12d k = N - 1 - 1 C k B N - 1 - k = C N - 1 - 1 B N - 1 - N - 1 - 1
167 9 nn0zd φ N 1
168 156 162 166 167 fzosumm1 φ k 0 ..^ N 1 C k B N - 1 - k = k 0 ..^ N - 1 - 1 C k B N - 1 - k + C N - 1 - 1 B N - 1 - N - 1 - 1
169 140 168 breqtrrd φ N 1 B N 1 < k 0 ..^ N 1 C k B N - 1 - k
170 14 46 10 169 ltadd2dd φ C N 1 + N 1 B N 1 < C N 1 + k 0 ..^ N 1 C k B N - 1 - k
171 35 162 fsumcl φ k 0 ..^ N 1 C k B N - 1 - k
172 157 9 expcld φ C N 1
173 171 172 addcomd φ k 0 ..^ N 1 C k B N - 1 - k + C N 1 = C N 1 + k 0 ..^ N 1 C k B N - 1 - k
174 170 173 breqtrrd φ C N 1 + N 1 B N 1 < k 0 ..^ N 1 C k B N - 1 - k + C N 1
175 59 adantr φ k 0 ..^ N 1 N
176 101 adantl φ k 0 ..^ N 1 k
177 1cnd φ k 0 ..^ N 1 1
178 175 176 177 sub32d φ k 0 ..^ N 1 N - k - 1 = N - 1 - k
179 178 oveq2d φ k 0 ..^ N 1 B N - k - 1 = B N - 1 - k
180 179 oveq2d φ k 0 ..^ N 1 C k B N - k - 1 = C k B N - 1 - k
181 180 sumeq2dv φ k 0 ..^ N 1 C k B N - k - 1 = k 0 ..^ N 1 C k B N - 1 - k
182 59 59 60 nnncand φ N - N 1 - 1 = N N
183 59 subidd φ N N = 0
184 182 183 eqtrd φ N - N 1 - 1 = 0
185 184 oveq2d φ B N - N 1 - 1 = B 0
186 86 exp0d φ B 0 = 1
187 185 186 eqtrd φ B N - N 1 - 1 = 1
188 187 oveq2d φ C N 1 B N - N 1 - 1 = C N 1 1
189 10 recnd φ C N 1
190 189 mulid1d φ C N 1 1 = C N 1
191 188 190 eqtrd φ C N 1 B N - N 1 - 1 = C N 1
192 181 191 oveq12d φ k 0 ..^ N 1 C k B N - k - 1 + C N 1 B N - N 1 - 1 = k 0 ..^ N 1 C k B N - 1 - k + C N 1
193 174 192 breqtrrd φ C N 1 + N 1 B N 1 < k 0 ..^ N 1 C k B N - k - 1 + C N 1 B N - N 1 - 1
194 elnn0uz N 1 0 N 1 0
195 9 194 sylib φ N 1 0
196 157 adantr φ k 0 ..^ N C
197 196 20 expcld φ k 0 ..^ N C k
198 86 adantr φ k 0 ..^ N B
199 198 26 expcld φ k 0 ..^ N B N - k - 1
200 197 199 mulcld φ k 0 ..^ N C k B N - k - 1
201 oveq2 k = N 1 C k = C N 1
202 oveq2 k = N 1 N k = N N 1
203 202 oveq1d k = N 1 N - k - 1 = N - N 1 - 1
204 203 oveq2d k = N 1 B N - k - 1 = B N - N 1 - 1
205 201 204 oveq12d k = N 1 C k B N - k - 1 = C N 1 B N - N 1 - 1
206 58 nn0zd φ N
207 195 200 205 206 fzosumm1 φ k 0 ..^ N C k B N - k - 1 = k 0 ..^ N 1 C k B N - k - 1 + C N 1 B N - N 1 - 1
208 193 207 breqtrrd φ C N 1 + N 1 B N 1 < k 0 ..^ N C k B N - k - 1
209 15 29 33 208 ltmul2dd φ C B C N 1 + N 1 B N 1 < C B k 0 ..^ N C k B N - k - 1
210 pwdif N 0 C B C N B N = C B k 0 ..^ N C k B N - k - 1
211 58 157 86 210 syl3anc φ C N B N = C B k 0 ..^ N C k B N - k - 1
212 209 211 breqtrrd φ C B C N 1 + N 1 B N 1 < C N B N
213 1 nncnd φ A
214 213 58 expcld φ A N
215 86 58 expcld φ B N
216 214 215 5 mvlraddd φ A N = C N B N
217 212 216 breqtrrd φ C B C N 1 + N 1 B N 1 < A N