Metamath Proof Explorer


Theorem fzosumm1

Description: Separate out the last term in a finite sum. (Contributed by Steven Nguyen, 22-Aug-2023)

Ref Expression
Hypotheses fzosumm1.1 φN1M
fzosumm1.2 φkM..^NA
fzosumm1.3 k=N1A=B
fzosumm1.n φN
Assertion fzosumm1 φkM..^NA=kM..^N1A+B

Proof

Step Hyp Ref Expression
1 fzosumm1.1 φN1M
2 fzosumm1.2 φkM..^NA
3 fzosumm1.3 k=N1A=B
4 fzosumm1.n φN
5 fzoval NM..^N=MN1
6 4 5 syl φM..^N=MN1
7 6 eqcomd φMN1=M..^N
8 7 eleq2d φkMN1kM..^N
9 8 biimpa φkMN1kM..^N
10 9 2 syldan φkMN1A
11 1 10 3 fsumm1 φk=MN1A=k=MN-1-1A+B
12 6 sumeq1d φkM..^NA=k=MN1A
13 eluzelz N1MN1
14 fzoval N1M..^N1=MN-1-1
15 1 13 14 3syl φM..^N1=MN-1-1
16 15 sumeq1d φkM..^N1A=k=MN-1-1A
17 16 oveq1d φkM..^N1A+B=k=MN-1-1A+B
18 11 12 17 3eqtr4d φkM..^NA=kM..^N1A+B