Step |
Hyp |
Ref |
Expression |
1 |
|
ccatcan2d.a |
|
2 |
|
ccatcan2d.b |
|
3 |
|
ccatcan2d.c |
|
4 |
|
simpr |
|
5 |
|
lencl |
|
6 |
1 5
|
syl |
|
7 |
6
|
nn0cnd |
|
8 |
7
|
adantr |
|
9 |
|
lencl |
|
10 |
2 9
|
syl |
|
11 |
10
|
nn0cnd |
|
12 |
11
|
adantr |
|
13 |
|
lencl |
|
14 |
3 13
|
syl |
|
15 |
14
|
nn0cnd |
|
16 |
15
|
adantr |
|
17 |
|
ccatlen |
|
18 |
1 3 17
|
syl2anc |
|
19 |
|
fveq2 |
|
20 |
18 19
|
sylan9req |
|
21 |
|
ccatlen |
|
22 |
2 3 21
|
syl2anc |
|
23 |
22
|
adantr |
|
24 |
20 23
|
eqtrd |
|
25 |
8 12 16 24
|
addcan2ad |
|
26 |
4 25
|
oveq12d |
|
27 |
26
|
ex |
|
28 |
|
pfxccat1 |
|
29 |
1 3 28
|
syl2anc |
|
30 |
|
pfxccat1 |
|
31 |
2 3 30
|
syl2anc |
|
32 |
29 31
|
eqeq12d |
|
33 |
27 32
|
sylibd |
|
34 |
|
oveq1 |
|
35 |
33 34
|
impbid1 |
|