| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ccatcan2d.a |
⊢ ( 𝜑 → 𝐴 ∈ Word 𝑉 ) |
| 2 |
|
ccatcan2d.b |
⊢ ( 𝜑 → 𝐵 ∈ Word 𝑉 ) |
| 3 |
|
ccatcan2d.c |
⊢ ( 𝜑 → 𝐶 ∈ Word 𝑉 ) |
| 4 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) |
| 5 |
|
lencl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 7 |
6
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 9 |
|
lencl |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 10 |
2 9
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 11 |
10
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 13 |
|
lencl |
⊢ ( 𝐶 ∈ Word 𝑉 → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) |
| 14 |
3 13
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) |
| 15 |
14
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐶 ) ∈ ℂ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ♯ ‘ 𝐶 ) ∈ ℂ ) |
| 17 |
|
ccatlen |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉 ) → ( ♯ ‘ ( 𝐴 ++ 𝐶 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐶 ) ) ) |
| 18 |
1 3 17
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ++ 𝐶 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐶 ) ) ) |
| 19 |
|
fveq2 |
⊢ ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) → ( ♯ ‘ ( 𝐴 ++ 𝐶 ) ) = ( ♯ ‘ ( 𝐵 ++ 𝐶 ) ) ) |
| 20 |
18 19
|
sylan9req |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐶 ) ) = ( ♯ ‘ ( 𝐵 ++ 𝐶 ) ) ) |
| 21 |
|
ccatlen |
⊢ ( ( 𝐵 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉 ) → ( ♯ ‘ ( 𝐵 ++ 𝐶 ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ 𝐶 ) ) ) |
| 22 |
2 3 21
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ++ 𝐶 ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ 𝐶 ) ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ♯ ‘ ( 𝐵 ++ 𝐶 ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ 𝐶 ) ) ) |
| 24 |
20 23
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐶 ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ 𝐶 ) ) ) |
| 25 |
8 12 16 24
|
addcan2ad |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |
| 26 |
4 25
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ( 𝐴 ++ 𝐶 ) prefix ( ♯ ‘ 𝐴 ) ) = ( ( 𝐵 ++ 𝐶 ) prefix ( ♯ ‘ 𝐵 ) ) ) |
| 27 |
26
|
ex |
⊢ ( 𝜑 → ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) → ( ( 𝐴 ++ 𝐶 ) prefix ( ♯ ‘ 𝐴 ) ) = ( ( 𝐵 ++ 𝐶 ) prefix ( ♯ ‘ 𝐵 ) ) ) ) |
| 28 |
|
pfxccat1 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉 ) → ( ( 𝐴 ++ 𝐶 ) prefix ( ♯ ‘ 𝐴 ) ) = 𝐴 ) |
| 29 |
1 3 28
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ++ 𝐶 ) prefix ( ♯ ‘ 𝐴 ) ) = 𝐴 ) |
| 30 |
|
pfxccat1 |
⊢ ( ( 𝐵 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉 ) → ( ( 𝐵 ++ 𝐶 ) prefix ( ♯ ‘ 𝐵 ) ) = 𝐵 ) |
| 31 |
2 3 30
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 ++ 𝐶 ) prefix ( ♯ ‘ 𝐵 ) ) = 𝐵 ) |
| 32 |
29 31
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 ++ 𝐶 ) prefix ( ♯ ‘ 𝐴 ) ) = ( ( 𝐵 ++ 𝐶 ) prefix ( ♯ ‘ 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) |
| 33 |
27 32
|
sylibd |
⊢ ( 𝜑 → ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) → 𝐴 = 𝐵 ) ) |
| 34 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) |
| 35 |
33 34
|
impbid1 |
⊢ ( 𝜑 → ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |