Step |
Hyp |
Ref |
Expression |
1 |
|
ccatcan2d.a |
⊢ ( 𝜑 → 𝐴 ∈ Word 𝑉 ) |
2 |
|
ccatcan2d.b |
⊢ ( 𝜑 → 𝐵 ∈ Word 𝑉 ) |
3 |
|
ccatcan2d.c |
⊢ ( 𝜑 → 𝐶 ∈ Word 𝑉 ) |
4 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) |
5 |
|
lencl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
7 |
6
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
9 |
|
lencl |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
10 |
2 9
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
11 |
10
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
13 |
|
lencl |
⊢ ( 𝐶 ∈ Word 𝑉 → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) |
14 |
3 13
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) |
15 |
14
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐶 ) ∈ ℂ ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ♯ ‘ 𝐶 ) ∈ ℂ ) |
17 |
|
ccatlen |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉 ) → ( ♯ ‘ ( 𝐴 ++ 𝐶 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐶 ) ) ) |
18 |
1 3 17
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ++ 𝐶 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐶 ) ) ) |
19 |
|
fveq2 |
⊢ ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) → ( ♯ ‘ ( 𝐴 ++ 𝐶 ) ) = ( ♯ ‘ ( 𝐵 ++ 𝐶 ) ) ) |
20 |
18 19
|
sylan9req |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐶 ) ) = ( ♯ ‘ ( 𝐵 ++ 𝐶 ) ) ) |
21 |
|
ccatlen |
⊢ ( ( 𝐵 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉 ) → ( ♯ ‘ ( 𝐵 ++ 𝐶 ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ 𝐶 ) ) ) |
22 |
2 3 21
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ++ 𝐶 ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ 𝐶 ) ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ♯ ‘ ( 𝐵 ++ 𝐶 ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ 𝐶 ) ) ) |
24 |
20 23
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐶 ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ 𝐶 ) ) ) |
25 |
8 12 16 24
|
addcan2ad |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |
26 |
4 25
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ( 𝐴 ++ 𝐶 ) prefix ( ♯ ‘ 𝐴 ) ) = ( ( 𝐵 ++ 𝐶 ) prefix ( ♯ ‘ 𝐵 ) ) ) |
27 |
26
|
ex |
⊢ ( 𝜑 → ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) → ( ( 𝐴 ++ 𝐶 ) prefix ( ♯ ‘ 𝐴 ) ) = ( ( 𝐵 ++ 𝐶 ) prefix ( ♯ ‘ 𝐵 ) ) ) ) |
28 |
|
pfxccat1 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉 ) → ( ( 𝐴 ++ 𝐶 ) prefix ( ♯ ‘ 𝐴 ) ) = 𝐴 ) |
29 |
1 3 28
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ++ 𝐶 ) prefix ( ♯ ‘ 𝐴 ) ) = 𝐴 ) |
30 |
|
pfxccat1 |
⊢ ( ( 𝐵 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉 ) → ( ( 𝐵 ++ 𝐶 ) prefix ( ♯ ‘ 𝐵 ) ) = 𝐵 ) |
31 |
2 3 30
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 ++ 𝐶 ) prefix ( ♯ ‘ 𝐵 ) ) = 𝐵 ) |
32 |
29 31
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 ++ 𝐶 ) prefix ( ♯ ‘ 𝐴 ) ) = ( ( 𝐵 ++ 𝐶 ) prefix ( ♯ ‘ 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) |
33 |
27 32
|
sylibd |
⊢ ( 𝜑 → ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) → 𝐴 = 𝐵 ) ) |
34 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) |
35 |
33 34
|
impbid1 |
⊢ ( 𝜑 → ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |