| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ccatcan2d.a | ⊢ ( 𝜑  →  𝐴  ∈  Word  𝑉 ) | 
						
							| 2 |  | ccatcan2d.b | ⊢ ( 𝜑  →  𝐵  ∈  Word  𝑉 ) | 
						
							| 3 |  | ccatcan2d.c | ⊢ ( 𝜑  →  𝐶  ∈  Word  𝑉 ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 ) )  →  ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 ) ) | 
						
							| 5 |  | lencl | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 7 | 6 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 ) )  →  ( ♯ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 9 |  | lencl | ⊢ ( 𝐵  ∈  Word  𝑉  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 10 | 2 9 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 11 | 10 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 ) )  →  ( ♯ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 13 |  | lencl | ⊢ ( 𝐶  ∈  Word  𝑉  →  ( ♯ ‘ 𝐶 )  ∈  ℕ0 ) | 
						
							| 14 | 3 13 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐶 )  ∈  ℕ0 ) | 
						
							| 15 | 14 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 ) )  →  ( ♯ ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 17 |  | ccatlen | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐶  ∈  Word  𝑉 )  →  ( ♯ ‘ ( 𝐴  ++  𝐶 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐶 ) ) ) | 
						
							| 18 | 1 3 17 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐴  ++  𝐶 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐶 ) ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 )  →  ( ♯ ‘ ( 𝐴  ++  𝐶 ) )  =  ( ♯ ‘ ( 𝐵  ++  𝐶 ) ) ) | 
						
							| 20 | 18 19 | sylan9req | ⊢ ( ( 𝜑  ∧  ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 ) )  →  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐶 ) )  =  ( ♯ ‘ ( 𝐵  ++  𝐶 ) ) ) | 
						
							| 21 |  | ccatlen | ⊢ ( ( 𝐵  ∈  Word  𝑉  ∧  𝐶  ∈  Word  𝑉 )  →  ( ♯ ‘ ( 𝐵  ++  𝐶 ) )  =  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ 𝐶 ) ) ) | 
						
							| 22 | 2 3 21 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐵  ++  𝐶 ) )  =  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ 𝐶 ) ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 ) )  →  ( ♯ ‘ ( 𝐵  ++  𝐶 ) )  =  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ 𝐶 ) ) ) | 
						
							| 24 | 20 23 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 ) )  →  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐶 ) )  =  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ 𝐶 ) ) ) | 
						
							| 25 | 8 12 16 24 | addcan2ad | ⊢ ( ( 𝜑  ∧  ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 ) )  →  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 26 | 4 25 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 ) )  →  ( ( 𝐴  ++  𝐶 )  prefix  ( ♯ ‘ 𝐴 ) )  =  ( ( 𝐵  ++  𝐶 )  prefix  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 27 | 26 | ex | ⊢ ( 𝜑  →  ( ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 )  →  ( ( 𝐴  ++  𝐶 )  prefix  ( ♯ ‘ 𝐴 ) )  =  ( ( 𝐵  ++  𝐶 )  prefix  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 28 |  | pfxccat1 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐶  ∈  Word  𝑉 )  →  ( ( 𝐴  ++  𝐶 )  prefix  ( ♯ ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 29 | 1 3 28 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  ++  𝐶 )  prefix  ( ♯ ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 30 |  | pfxccat1 | ⊢ ( ( 𝐵  ∈  Word  𝑉  ∧  𝐶  ∈  Word  𝑉 )  →  ( ( 𝐵  ++  𝐶 )  prefix  ( ♯ ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 31 | 2 3 30 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐵  ++  𝐶 )  prefix  ( ♯ ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 32 | 29 31 | eqeq12d | ⊢ ( 𝜑  →  ( ( ( 𝐴  ++  𝐶 )  prefix  ( ♯ ‘ 𝐴 ) )  =  ( ( 𝐵  ++  𝐶 )  prefix  ( ♯ ‘ 𝐵 ) )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 33 | 27 32 | sylibd | ⊢ ( 𝜑  →  ( ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 )  →  𝐴  =  𝐵 ) ) | 
						
							| 34 |  | oveq1 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 ) ) | 
						
							| 35 | 33 34 | impbid1 | ⊢ ( 𝜑  →  ( ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 )  ↔  𝐴  =  𝐵 ) ) |