| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ccatcan2d.a |
|- ( ph -> A e. Word V ) |
| 2 |
|
ccatcan2d.b |
|- ( ph -> B e. Word V ) |
| 3 |
|
ccatcan2d.c |
|- ( ph -> C e. Word V ) |
| 4 |
|
simpr |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( A ++ C ) = ( B ++ C ) ) |
| 5 |
|
lencl |
|- ( A e. Word V -> ( # ` A ) e. NN0 ) |
| 6 |
1 5
|
syl |
|- ( ph -> ( # ` A ) e. NN0 ) |
| 7 |
6
|
nn0cnd |
|- ( ph -> ( # ` A ) e. CC ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( # ` A ) e. CC ) |
| 9 |
|
lencl |
|- ( B e. Word V -> ( # ` B ) e. NN0 ) |
| 10 |
2 9
|
syl |
|- ( ph -> ( # ` B ) e. NN0 ) |
| 11 |
10
|
nn0cnd |
|- ( ph -> ( # ` B ) e. CC ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( # ` B ) e. CC ) |
| 13 |
|
lencl |
|- ( C e. Word V -> ( # ` C ) e. NN0 ) |
| 14 |
3 13
|
syl |
|- ( ph -> ( # ` C ) e. NN0 ) |
| 15 |
14
|
nn0cnd |
|- ( ph -> ( # ` C ) e. CC ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( # ` C ) e. CC ) |
| 17 |
|
ccatlen |
|- ( ( A e. Word V /\ C e. Word V ) -> ( # ` ( A ++ C ) ) = ( ( # ` A ) + ( # ` C ) ) ) |
| 18 |
1 3 17
|
syl2anc |
|- ( ph -> ( # ` ( A ++ C ) ) = ( ( # ` A ) + ( # ` C ) ) ) |
| 19 |
|
fveq2 |
|- ( ( A ++ C ) = ( B ++ C ) -> ( # ` ( A ++ C ) ) = ( # ` ( B ++ C ) ) ) |
| 20 |
18 19
|
sylan9req |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( ( # ` A ) + ( # ` C ) ) = ( # ` ( B ++ C ) ) ) |
| 21 |
|
ccatlen |
|- ( ( B e. Word V /\ C e. Word V ) -> ( # ` ( B ++ C ) ) = ( ( # ` B ) + ( # ` C ) ) ) |
| 22 |
2 3 21
|
syl2anc |
|- ( ph -> ( # ` ( B ++ C ) ) = ( ( # ` B ) + ( # ` C ) ) ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( # ` ( B ++ C ) ) = ( ( # ` B ) + ( # ` C ) ) ) |
| 24 |
20 23
|
eqtrd |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( ( # ` A ) + ( # ` C ) ) = ( ( # ` B ) + ( # ` C ) ) ) |
| 25 |
8 12 16 24
|
addcan2ad |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( # ` A ) = ( # ` B ) ) |
| 26 |
4 25
|
oveq12d |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( ( A ++ C ) prefix ( # ` A ) ) = ( ( B ++ C ) prefix ( # ` B ) ) ) |
| 27 |
26
|
ex |
|- ( ph -> ( ( A ++ C ) = ( B ++ C ) -> ( ( A ++ C ) prefix ( # ` A ) ) = ( ( B ++ C ) prefix ( # ` B ) ) ) ) |
| 28 |
|
pfxccat1 |
|- ( ( A e. Word V /\ C e. Word V ) -> ( ( A ++ C ) prefix ( # ` A ) ) = A ) |
| 29 |
1 3 28
|
syl2anc |
|- ( ph -> ( ( A ++ C ) prefix ( # ` A ) ) = A ) |
| 30 |
|
pfxccat1 |
|- ( ( B e. Word V /\ C e. Word V ) -> ( ( B ++ C ) prefix ( # ` B ) ) = B ) |
| 31 |
2 3 30
|
syl2anc |
|- ( ph -> ( ( B ++ C ) prefix ( # ` B ) ) = B ) |
| 32 |
29 31
|
eqeq12d |
|- ( ph -> ( ( ( A ++ C ) prefix ( # ` A ) ) = ( ( B ++ C ) prefix ( # ` B ) ) <-> A = B ) ) |
| 33 |
27 32
|
sylibd |
|- ( ph -> ( ( A ++ C ) = ( B ++ C ) -> A = B ) ) |
| 34 |
|
oveq1 |
|- ( A = B -> ( A ++ C ) = ( B ++ C ) ) |
| 35 |
33 34
|
impbid1 |
|- ( ph -> ( ( A ++ C ) = ( B ++ C ) <-> A = B ) ) |