Step |
Hyp |
Ref |
Expression |
1 |
|
ccatcan2d.a |
|- ( ph -> A e. Word V ) |
2 |
|
ccatcan2d.b |
|- ( ph -> B e. Word V ) |
3 |
|
ccatcan2d.c |
|- ( ph -> C e. Word V ) |
4 |
|
simpr |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( A ++ C ) = ( B ++ C ) ) |
5 |
|
lencl |
|- ( A e. Word V -> ( # ` A ) e. NN0 ) |
6 |
1 5
|
syl |
|- ( ph -> ( # ` A ) e. NN0 ) |
7 |
6
|
nn0cnd |
|- ( ph -> ( # ` A ) e. CC ) |
8 |
7
|
adantr |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( # ` A ) e. CC ) |
9 |
|
lencl |
|- ( B e. Word V -> ( # ` B ) e. NN0 ) |
10 |
2 9
|
syl |
|- ( ph -> ( # ` B ) e. NN0 ) |
11 |
10
|
nn0cnd |
|- ( ph -> ( # ` B ) e. CC ) |
12 |
11
|
adantr |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( # ` B ) e. CC ) |
13 |
|
lencl |
|- ( C e. Word V -> ( # ` C ) e. NN0 ) |
14 |
3 13
|
syl |
|- ( ph -> ( # ` C ) e. NN0 ) |
15 |
14
|
nn0cnd |
|- ( ph -> ( # ` C ) e. CC ) |
16 |
15
|
adantr |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( # ` C ) e. CC ) |
17 |
|
ccatlen |
|- ( ( A e. Word V /\ C e. Word V ) -> ( # ` ( A ++ C ) ) = ( ( # ` A ) + ( # ` C ) ) ) |
18 |
1 3 17
|
syl2anc |
|- ( ph -> ( # ` ( A ++ C ) ) = ( ( # ` A ) + ( # ` C ) ) ) |
19 |
|
fveq2 |
|- ( ( A ++ C ) = ( B ++ C ) -> ( # ` ( A ++ C ) ) = ( # ` ( B ++ C ) ) ) |
20 |
18 19
|
sylan9req |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( ( # ` A ) + ( # ` C ) ) = ( # ` ( B ++ C ) ) ) |
21 |
|
ccatlen |
|- ( ( B e. Word V /\ C e. Word V ) -> ( # ` ( B ++ C ) ) = ( ( # ` B ) + ( # ` C ) ) ) |
22 |
2 3 21
|
syl2anc |
|- ( ph -> ( # ` ( B ++ C ) ) = ( ( # ` B ) + ( # ` C ) ) ) |
23 |
22
|
adantr |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( # ` ( B ++ C ) ) = ( ( # ` B ) + ( # ` C ) ) ) |
24 |
20 23
|
eqtrd |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( ( # ` A ) + ( # ` C ) ) = ( ( # ` B ) + ( # ` C ) ) ) |
25 |
8 12 16 24
|
addcan2ad |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( # ` A ) = ( # ` B ) ) |
26 |
4 25
|
oveq12d |
|- ( ( ph /\ ( A ++ C ) = ( B ++ C ) ) -> ( ( A ++ C ) prefix ( # ` A ) ) = ( ( B ++ C ) prefix ( # ` B ) ) ) |
27 |
26
|
ex |
|- ( ph -> ( ( A ++ C ) = ( B ++ C ) -> ( ( A ++ C ) prefix ( # ` A ) ) = ( ( B ++ C ) prefix ( # ` B ) ) ) ) |
28 |
|
pfxccat1 |
|- ( ( A e. Word V /\ C e. Word V ) -> ( ( A ++ C ) prefix ( # ` A ) ) = A ) |
29 |
1 3 28
|
syl2anc |
|- ( ph -> ( ( A ++ C ) prefix ( # ` A ) ) = A ) |
30 |
|
pfxccat1 |
|- ( ( B e. Word V /\ C e. Word V ) -> ( ( B ++ C ) prefix ( # ` B ) ) = B ) |
31 |
2 3 30
|
syl2anc |
|- ( ph -> ( ( B ++ C ) prefix ( # ` B ) ) = B ) |
32 |
29 31
|
eqeq12d |
|- ( ph -> ( ( ( A ++ C ) prefix ( # ` A ) ) = ( ( B ++ C ) prefix ( # ` B ) ) <-> A = B ) ) |
33 |
27 32
|
sylibd |
|- ( ph -> ( ( A ++ C ) = ( B ++ C ) -> A = B ) ) |
34 |
|
oveq1 |
|- ( A = B -> ( A ++ C ) = ( B ++ C ) ) |
35 |
33 34
|
impbid1 |
|- ( ph -> ( ( A ++ C ) = ( B ++ C ) <-> A = B ) ) |