Metamath Proof Explorer


Theorem ltexp1dd

Description: Raising both sides of 'less than' to the same positive integer preserves ordering. (Contributed by Steven Nguyen, 24-Aug-2023)

Ref Expression
Hypotheses ltexp1d.1 φA+
ltexp1d.2 φB+
ltexp1d.3 φN
ltexp1dd.4 φA<B
Assertion ltexp1dd φAN<BN

Proof

Step Hyp Ref Expression
1 ltexp1d.1 φA+
2 ltexp1d.2 φB+
3 ltexp1d.3 φN
4 ltexp1dd.4 φA<B
5 1 2 3 ltexp1d φA<BAN<BN
6 4 5 mpbid φAN<BN