Metamath Proof Explorer


Theorem ltexp1dd

Description: Raising both sides of 'less than' to the same positive integer preserves ordering. (Contributed by Steven Nguyen, 24-Aug-2023)

Ref Expression
Hypotheses ltexp1d.1 φ A +
ltexp1d.2 φ B +
ltexp1d.3 φ N
ltexp1dd.4 φ A < B
Assertion ltexp1dd φ A N < B N

Proof

Step Hyp Ref Expression
1 ltexp1d.1 φ A +
2 ltexp1d.2 φ B +
3 ltexp1d.3 φ N
4 ltexp1dd.4 φ A < B
5 1 2 3 ltexp1d φ A < B A N < B N
6 4 5 mpbid φ A N < B N