Metamath Proof Explorer


Theorem ltexp1dd

Description: Raising both sides of 'less than' to the same positive integer preserves ordering. (Contributed by Steven Nguyen, 24-Aug-2023)

Ref Expression
Hypotheses ltexp1d.1 ( 𝜑𝐴 ∈ ℝ+ )
ltexp1d.2 ( 𝜑𝐵 ∈ ℝ+ )
ltexp1d.3 ( 𝜑𝑁 ∈ ℕ )
ltexp1dd.4 ( 𝜑𝐴 < 𝐵 )
Assertion ltexp1dd ( 𝜑 → ( 𝐴𝑁 ) < ( 𝐵𝑁 ) )

Proof

Step Hyp Ref Expression
1 ltexp1d.1 ( 𝜑𝐴 ∈ ℝ+ )
2 ltexp1d.2 ( 𝜑𝐵 ∈ ℝ+ )
3 ltexp1d.3 ( 𝜑𝑁 ∈ ℕ )
4 ltexp1dd.4 ( 𝜑𝐴 < 𝐵 )
5 1 2 3 ltexp1d ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐴𝑁 ) < ( 𝐵𝑁 ) ) )
6 4 5 mpbid ( 𝜑 → ( 𝐴𝑁 ) < ( 𝐵𝑁 ) )