Metamath Proof Explorer


Theorem nnncand

Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φ A
pncand.2 φ B
subaddd.3 φ C
Assertion nnncand φ A - B C - C = A B

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 pncand.2 φ B
3 subaddd.3 φ C
4 nnncan A B C A - B C - C = A B
5 1 2 3 4 syl3anc φ A - B C - C = A B