| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fltltc.a |
|- ( ph -> A e. NN ) |
| 2 |
|
fltltc.b |
|- ( ph -> B e. NN ) |
| 3 |
|
fltltc.c |
|- ( ph -> C e. NN ) |
| 4 |
|
fltltc.n |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
| 5 |
|
fltltc.1 |
|- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) |
| 6 |
|
fltnlta.1 |
|- ( ph -> A < B ) |
| 7 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
| 8 |
4 7
|
syl |
|- ( ph -> N e. NN ) |
| 9 |
8
|
nnred |
|- ( ph -> N e. RR ) |
| 10 |
3
|
nnred |
|- ( ph -> C e. RR ) |
| 11 |
2
|
nnred |
|- ( ph -> B e. RR ) |
| 12 |
10 11
|
resubcld |
|- ( ph -> ( C - B ) e. RR ) |
| 13 |
|
uzuzle23 |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) ) |
| 14 |
|
uz2m1nn |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) |
| 15 |
4 13 14
|
3syl |
|- ( ph -> ( N - 1 ) e. NN ) |
| 16 |
15
|
nnnn0d |
|- ( ph -> ( N - 1 ) e. NN0 ) |
| 17 |
10 16
|
reexpcld |
|- ( ph -> ( C ^ ( N - 1 ) ) e. RR ) |
| 18 |
15
|
nnred |
|- ( ph -> ( N - 1 ) e. RR ) |
| 19 |
11 16
|
reexpcld |
|- ( ph -> ( B ^ ( N - 1 ) ) e. RR ) |
| 20 |
18 19
|
remulcld |
|- ( ph -> ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) e. RR ) |
| 21 |
17 20
|
readdcld |
|- ( ph -> ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) e. RR ) |
| 22 |
12 21
|
remulcld |
|- ( ph -> ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) e. RR ) |
| 23 |
1
|
nnrpd |
|- ( ph -> A e. RR+ ) |
| 24 |
15
|
nnzd |
|- ( ph -> ( N - 1 ) e. ZZ ) |
| 25 |
23 24
|
rpexpcld |
|- ( ph -> ( A ^ ( N - 1 ) ) e. RR+ ) |
| 26 |
22 25
|
rerpdivcld |
|- ( ph -> ( ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) e. RR ) |
| 27 |
1
|
nnred |
|- ( ph -> A e. RR ) |
| 28 |
19 20
|
readdcld |
|- ( ph -> ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) e. RR ) |
| 29 |
12 28
|
remulcld |
|- ( ph -> ( ( C - B ) x. ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) e. RR ) |
| 30 |
29 25
|
rerpdivcld |
|- ( ph -> ( ( ( C - B ) x. ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) e. RR ) |
| 31 |
12 9
|
remulcld |
|- ( ph -> ( ( C - B ) x. N ) e. RR ) |
| 32 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 33 |
15
|
nncnd |
|- ( ph -> ( N - 1 ) e. CC ) |
| 34 |
19
|
recnd |
|- ( ph -> ( B ^ ( N - 1 ) ) e. CC ) |
| 35 |
32 33 34
|
adddird |
|- ( ph -> ( ( 1 + ( N - 1 ) ) x. ( B ^ ( N - 1 ) ) ) = ( ( 1 x. ( B ^ ( N - 1 ) ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) |
| 36 |
8
|
nncnd |
|- ( ph -> N e. CC ) |
| 37 |
32 36
|
pncan3d |
|- ( ph -> ( 1 + ( N - 1 ) ) = N ) |
| 38 |
37
|
oveq1d |
|- ( ph -> ( ( 1 + ( N - 1 ) ) x. ( B ^ ( N - 1 ) ) ) = ( N x. ( B ^ ( N - 1 ) ) ) ) |
| 39 |
34
|
mullidd |
|- ( ph -> ( 1 x. ( B ^ ( N - 1 ) ) ) = ( B ^ ( N - 1 ) ) ) |
| 40 |
39
|
oveq1d |
|- ( ph -> ( ( 1 x. ( B ^ ( N - 1 ) ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) = ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) |
| 41 |
35 38 40
|
3eqtr3rd |
|- ( ph -> ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) = ( N x. ( B ^ ( N - 1 ) ) ) ) |
| 42 |
41
|
oveq2d |
|- ( ph -> ( ( C - B ) x. ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) = ( ( C - B ) x. ( N x. ( B ^ ( N - 1 ) ) ) ) ) |
| 43 |
42
|
oveq1d |
|- ( ph -> ( ( ( C - B ) x. ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) = ( ( ( C - B ) x. ( N x. ( B ^ ( N - 1 ) ) ) ) / ( A ^ ( N - 1 ) ) ) ) |
| 44 |
43 30
|
eqeltrrd |
|- ( ph -> ( ( ( C - B ) x. ( N x. ( B ^ ( N - 1 ) ) ) ) / ( A ^ ( N - 1 ) ) ) e. RR ) |
| 45 |
8
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 46 |
45
|
nn0ge0d |
|- ( ph -> 0 <_ N ) |
| 47 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 48 |
1 2 3 4 5
|
fltltc |
|- ( ph -> B < C ) |
| 49 |
|
nnltp1le |
|- ( ( B e. NN /\ C e. NN ) -> ( B < C <-> ( B + 1 ) <_ C ) ) |
| 50 |
2 3 49
|
syl2anc |
|- ( ph -> ( B < C <-> ( B + 1 ) <_ C ) ) |
| 51 |
48 50
|
mpbid |
|- ( ph -> ( B + 1 ) <_ C ) |
| 52 |
11
|
leidd |
|- ( ph -> B <_ B ) |
| 53 |
10 11 47 11 51 52
|
lesub3d |
|- ( ph -> 1 <_ ( C - B ) ) |
| 54 |
9 12 46 53
|
lemulge12d |
|- ( ph -> N <_ ( ( C - B ) x. N ) ) |
| 55 |
12
|
recnd |
|- ( ph -> ( C - B ) e. CC ) |
| 56 |
25
|
rpred |
|- ( ph -> ( A ^ ( N - 1 ) ) e. RR ) |
| 57 |
56
|
recnd |
|- ( ph -> ( A ^ ( N - 1 ) ) e. CC ) |
| 58 |
55 36 57
|
mulassd |
|- ( ph -> ( ( ( C - B ) x. N ) x. ( A ^ ( N - 1 ) ) ) = ( ( C - B ) x. ( N x. ( A ^ ( N - 1 ) ) ) ) ) |
| 59 |
58
|
oveq1d |
|- ( ph -> ( ( ( ( C - B ) x. N ) x. ( A ^ ( N - 1 ) ) ) / ( A ^ ( N - 1 ) ) ) = ( ( ( C - B ) x. ( N x. ( A ^ ( N - 1 ) ) ) ) / ( A ^ ( N - 1 ) ) ) ) |
| 60 |
55 36
|
mulcld |
|- ( ph -> ( ( C - B ) x. N ) e. CC ) |
| 61 |
1
|
nncnd |
|- ( ph -> A e. CC ) |
| 62 |
1
|
nnne0d |
|- ( ph -> A =/= 0 ) |
| 63 |
61 62 24
|
expne0d |
|- ( ph -> ( A ^ ( N - 1 ) ) =/= 0 ) |
| 64 |
60 57 63
|
divcan4d |
|- ( ph -> ( ( ( ( C - B ) x. N ) x. ( A ^ ( N - 1 ) ) ) / ( A ^ ( N - 1 ) ) ) = ( ( C - B ) x. N ) ) |
| 65 |
59 64
|
eqtr3d |
|- ( ph -> ( ( ( C - B ) x. ( N x. ( A ^ ( N - 1 ) ) ) ) / ( A ^ ( N - 1 ) ) ) = ( ( C - B ) x. N ) ) |
| 66 |
9 56
|
remulcld |
|- ( ph -> ( N x. ( A ^ ( N - 1 ) ) ) e. RR ) |
| 67 |
12 66
|
remulcld |
|- ( ph -> ( ( C - B ) x. ( N x. ( A ^ ( N - 1 ) ) ) ) e. RR ) |
| 68 |
42 29
|
eqeltrrd |
|- ( ph -> ( ( C - B ) x. ( N x. ( B ^ ( N - 1 ) ) ) ) e. RR ) |
| 69 |
41 28
|
eqeltrrd |
|- ( ph -> ( N x. ( B ^ ( N - 1 ) ) ) e. RR ) |
| 70 |
|
difrp |
|- ( ( B e. RR /\ C e. RR ) -> ( B < C <-> ( C - B ) e. RR+ ) ) |
| 71 |
11 10 70
|
syl2anc |
|- ( ph -> ( B < C <-> ( C - B ) e. RR+ ) ) |
| 72 |
48 71
|
mpbid |
|- ( ph -> ( C - B ) e. RR+ ) |
| 73 |
8
|
nnrpd |
|- ( ph -> N e. RR+ ) |
| 74 |
2
|
nnrpd |
|- ( ph -> B e. RR+ ) |
| 75 |
23 74 15 6
|
ltexp1dd |
|- ( ph -> ( A ^ ( N - 1 ) ) < ( B ^ ( N - 1 ) ) ) |
| 76 |
56 19 73 75
|
ltmul2dd |
|- ( ph -> ( N x. ( A ^ ( N - 1 ) ) ) < ( N x. ( B ^ ( N - 1 ) ) ) ) |
| 77 |
66 69 72 76
|
ltmul2dd |
|- ( ph -> ( ( C - B ) x. ( N x. ( A ^ ( N - 1 ) ) ) ) < ( ( C - B ) x. ( N x. ( B ^ ( N - 1 ) ) ) ) ) |
| 78 |
67 68 25 77
|
ltdiv1dd |
|- ( ph -> ( ( ( C - B ) x. ( N x. ( A ^ ( N - 1 ) ) ) ) / ( A ^ ( N - 1 ) ) ) < ( ( ( C - B ) x. ( N x. ( B ^ ( N - 1 ) ) ) ) / ( A ^ ( N - 1 ) ) ) ) |
| 79 |
65 78
|
eqbrtrrd |
|- ( ph -> ( ( C - B ) x. N ) < ( ( ( C - B ) x. ( N x. ( B ^ ( N - 1 ) ) ) ) / ( A ^ ( N - 1 ) ) ) ) |
| 80 |
9 31 44 54 79
|
lelttrd |
|- ( ph -> N < ( ( ( C - B ) x. ( N x. ( B ^ ( N - 1 ) ) ) ) / ( A ^ ( N - 1 ) ) ) ) |
| 81 |
80 43
|
breqtrrd |
|- ( ph -> N < ( ( ( C - B ) x. ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) ) |
| 82 |
3
|
nnrpd |
|- ( ph -> C e. RR+ ) |
| 83 |
74 82 15 48
|
ltexp1dd |
|- ( ph -> ( B ^ ( N - 1 ) ) < ( C ^ ( N - 1 ) ) ) |
| 84 |
19 17 20 83
|
ltadd1dd |
|- ( ph -> ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) < ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) |
| 85 |
28 21 72 84
|
ltmul2dd |
|- ( ph -> ( ( C - B ) x. ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) < ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) ) |
| 86 |
29 22 25 85
|
ltdiv1dd |
|- ( ph -> ( ( ( C - B ) x. ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) < ( ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) ) |
| 87 |
9 30 26 81 86
|
lttrd |
|- ( ph -> N < ( ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) ) |
| 88 |
27 45
|
reexpcld |
|- ( ph -> ( A ^ N ) e. RR ) |
| 89 |
1 2 3 4 5
|
fltnltalem |
|- ( ph -> ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) < ( A ^ N ) ) |
| 90 |
22 88 25 89
|
ltdiv1dd |
|- ( ph -> ( ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) < ( ( A ^ N ) / ( A ^ ( N - 1 ) ) ) ) |
| 91 |
36 32
|
nncand |
|- ( ph -> ( N - ( N - 1 ) ) = 1 ) |
| 92 |
91
|
oveq2d |
|- ( ph -> ( A ^ ( N - ( N - 1 ) ) ) = ( A ^ 1 ) ) |
| 93 |
8
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 94 |
61 62 24 93
|
expsubd |
|- ( ph -> ( A ^ ( N - ( N - 1 ) ) ) = ( ( A ^ N ) / ( A ^ ( N - 1 ) ) ) ) |
| 95 |
61
|
exp1d |
|- ( ph -> ( A ^ 1 ) = A ) |
| 96 |
92 94 95
|
3eqtr3d |
|- ( ph -> ( ( A ^ N ) / ( A ^ ( N - 1 ) ) ) = A ) |
| 97 |
90 96
|
breqtrd |
|- ( ph -> ( ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) < A ) |
| 98 |
9 26 27 87 97
|
lttrd |
|- ( ph -> N < A ) |