| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fltltc.a |  |-  ( ph -> A e. NN ) | 
						
							| 2 |  | fltltc.b |  |-  ( ph -> B e. NN ) | 
						
							| 3 |  | fltltc.c |  |-  ( ph -> C e. NN ) | 
						
							| 4 |  | fltltc.n |  |-  ( ph -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 5 |  | fltltc.1 |  |-  ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) | 
						
							| 6 |  | fltnlta.1 |  |-  ( ph -> A < B ) | 
						
							| 7 |  | eluzge3nn |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. NN ) | 
						
							| 8 | 4 7 | syl |  |-  ( ph -> N e. NN ) | 
						
							| 9 | 8 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 10 | 3 | nnred |  |-  ( ph -> C e. RR ) | 
						
							| 11 | 2 | nnred |  |-  ( ph -> B e. RR ) | 
						
							| 12 | 10 11 | resubcld |  |-  ( ph -> ( C - B ) e. RR ) | 
						
							| 13 |  | uzuzle23 |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 14 |  | uz2m1nn |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) | 
						
							| 15 | 4 13 14 | 3syl |  |-  ( ph -> ( N - 1 ) e. NN ) | 
						
							| 16 | 15 | nnnn0d |  |-  ( ph -> ( N - 1 ) e. NN0 ) | 
						
							| 17 | 10 16 | reexpcld |  |-  ( ph -> ( C ^ ( N - 1 ) ) e. RR ) | 
						
							| 18 | 15 | nnred |  |-  ( ph -> ( N - 1 ) e. RR ) | 
						
							| 19 | 11 16 | reexpcld |  |-  ( ph -> ( B ^ ( N - 1 ) ) e. RR ) | 
						
							| 20 | 18 19 | remulcld |  |-  ( ph -> ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) e. RR ) | 
						
							| 21 | 17 20 | readdcld |  |-  ( ph -> ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) e. RR ) | 
						
							| 22 | 12 21 | remulcld |  |-  ( ph -> ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) e. RR ) | 
						
							| 23 | 1 | nnrpd |  |-  ( ph -> A e. RR+ ) | 
						
							| 24 | 15 | nnzd |  |-  ( ph -> ( N - 1 ) e. ZZ ) | 
						
							| 25 | 23 24 | rpexpcld |  |-  ( ph -> ( A ^ ( N - 1 ) ) e. RR+ ) | 
						
							| 26 | 22 25 | rerpdivcld |  |-  ( ph -> ( ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) e. RR ) | 
						
							| 27 | 1 | nnred |  |-  ( ph -> A e. RR ) | 
						
							| 28 | 19 20 | readdcld |  |-  ( ph -> ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) e. RR ) | 
						
							| 29 | 12 28 | remulcld |  |-  ( ph -> ( ( C - B ) x. ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) e. RR ) | 
						
							| 30 | 29 25 | rerpdivcld |  |-  ( ph -> ( ( ( C - B ) x. ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) e. RR ) | 
						
							| 31 | 12 9 | remulcld |  |-  ( ph -> ( ( C - B ) x. N ) e. RR ) | 
						
							| 32 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 33 | 15 | nncnd |  |-  ( ph -> ( N - 1 ) e. CC ) | 
						
							| 34 | 19 | recnd |  |-  ( ph -> ( B ^ ( N - 1 ) ) e. CC ) | 
						
							| 35 | 32 33 34 | adddird |  |-  ( ph -> ( ( 1 + ( N - 1 ) ) x. ( B ^ ( N - 1 ) ) ) = ( ( 1 x. ( B ^ ( N - 1 ) ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) | 
						
							| 36 | 8 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 37 | 32 36 | pncan3d |  |-  ( ph -> ( 1 + ( N - 1 ) ) = N ) | 
						
							| 38 | 37 | oveq1d |  |-  ( ph -> ( ( 1 + ( N - 1 ) ) x. ( B ^ ( N - 1 ) ) ) = ( N x. ( B ^ ( N - 1 ) ) ) ) | 
						
							| 39 | 34 | mullidd |  |-  ( ph -> ( 1 x. ( B ^ ( N - 1 ) ) ) = ( B ^ ( N - 1 ) ) ) | 
						
							| 40 | 39 | oveq1d |  |-  ( ph -> ( ( 1 x. ( B ^ ( N - 1 ) ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) = ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) | 
						
							| 41 | 35 38 40 | 3eqtr3rd |  |-  ( ph -> ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) = ( N x. ( B ^ ( N - 1 ) ) ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( ph -> ( ( C - B ) x. ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) = ( ( C - B ) x. ( N x. ( B ^ ( N - 1 ) ) ) ) ) | 
						
							| 43 | 42 | oveq1d |  |-  ( ph -> ( ( ( C - B ) x. ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) = ( ( ( C - B ) x. ( N x. ( B ^ ( N - 1 ) ) ) ) / ( A ^ ( N - 1 ) ) ) ) | 
						
							| 44 | 43 30 | eqeltrrd |  |-  ( ph -> ( ( ( C - B ) x. ( N x. ( B ^ ( N - 1 ) ) ) ) / ( A ^ ( N - 1 ) ) ) e. RR ) | 
						
							| 45 | 8 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 46 | 45 | nn0ge0d |  |-  ( ph -> 0 <_ N ) | 
						
							| 47 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 48 | 1 2 3 4 5 | fltltc |  |-  ( ph -> B < C ) | 
						
							| 49 |  | nnltp1le |  |-  ( ( B e. NN /\ C e. NN ) -> ( B < C <-> ( B + 1 ) <_ C ) ) | 
						
							| 50 | 2 3 49 | syl2anc |  |-  ( ph -> ( B < C <-> ( B + 1 ) <_ C ) ) | 
						
							| 51 | 48 50 | mpbid |  |-  ( ph -> ( B + 1 ) <_ C ) | 
						
							| 52 | 11 | leidd |  |-  ( ph -> B <_ B ) | 
						
							| 53 | 10 11 47 11 51 52 | lesub3d |  |-  ( ph -> 1 <_ ( C - B ) ) | 
						
							| 54 | 9 12 46 53 | lemulge12d |  |-  ( ph -> N <_ ( ( C - B ) x. N ) ) | 
						
							| 55 | 12 | recnd |  |-  ( ph -> ( C - B ) e. CC ) | 
						
							| 56 | 25 | rpred |  |-  ( ph -> ( A ^ ( N - 1 ) ) e. RR ) | 
						
							| 57 | 56 | recnd |  |-  ( ph -> ( A ^ ( N - 1 ) ) e. CC ) | 
						
							| 58 | 55 36 57 | mulassd |  |-  ( ph -> ( ( ( C - B ) x. N ) x. ( A ^ ( N - 1 ) ) ) = ( ( C - B ) x. ( N x. ( A ^ ( N - 1 ) ) ) ) ) | 
						
							| 59 | 58 | oveq1d |  |-  ( ph -> ( ( ( ( C - B ) x. N ) x. ( A ^ ( N - 1 ) ) ) / ( A ^ ( N - 1 ) ) ) = ( ( ( C - B ) x. ( N x. ( A ^ ( N - 1 ) ) ) ) / ( A ^ ( N - 1 ) ) ) ) | 
						
							| 60 | 55 36 | mulcld |  |-  ( ph -> ( ( C - B ) x. N ) e. CC ) | 
						
							| 61 | 1 | nncnd |  |-  ( ph -> A e. CC ) | 
						
							| 62 | 1 | nnne0d |  |-  ( ph -> A =/= 0 ) | 
						
							| 63 | 61 62 24 | expne0d |  |-  ( ph -> ( A ^ ( N - 1 ) ) =/= 0 ) | 
						
							| 64 | 60 57 63 | divcan4d |  |-  ( ph -> ( ( ( ( C - B ) x. N ) x. ( A ^ ( N - 1 ) ) ) / ( A ^ ( N - 1 ) ) ) = ( ( C - B ) x. N ) ) | 
						
							| 65 | 59 64 | eqtr3d |  |-  ( ph -> ( ( ( C - B ) x. ( N x. ( A ^ ( N - 1 ) ) ) ) / ( A ^ ( N - 1 ) ) ) = ( ( C - B ) x. N ) ) | 
						
							| 66 | 9 56 | remulcld |  |-  ( ph -> ( N x. ( A ^ ( N - 1 ) ) ) e. RR ) | 
						
							| 67 | 12 66 | remulcld |  |-  ( ph -> ( ( C - B ) x. ( N x. ( A ^ ( N - 1 ) ) ) ) e. RR ) | 
						
							| 68 | 42 29 | eqeltrrd |  |-  ( ph -> ( ( C - B ) x. ( N x. ( B ^ ( N - 1 ) ) ) ) e. RR ) | 
						
							| 69 | 41 28 | eqeltrrd |  |-  ( ph -> ( N x. ( B ^ ( N - 1 ) ) ) e. RR ) | 
						
							| 70 |  | difrp |  |-  ( ( B e. RR /\ C e. RR ) -> ( B < C <-> ( C - B ) e. RR+ ) ) | 
						
							| 71 | 11 10 70 | syl2anc |  |-  ( ph -> ( B < C <-> ( C - B ) e. RR+ ) ) | 
						
							| 72 | 48 71 | mpbid |  |-  ( ph -> ( C - B ) e. RR+ ) | 
						
							| 73 | 8 | nnrpd |  |-  ( ph -> N e. RR+ ) | 
						
							| 74 | 2 | nnrpd |  |-  ( ph -> B e. RR+ ) | 
						
							| 75 | 23 74 15 6 | ltexp1dd |  |-  ( ph -> ( A ^ ( N - 1 ) ) < ( B ^ ( N - 1 ) ) ) | 
						
							| 76 | 56 19 73 75 | ltmul2dd |  |-  ( ph -> ( N x. ( A ^ ( N - 1 ) ) ) < ( N x. ( B ^ ( N - 1 ) ) ) ) | 
						
							| 77 | 66 69 72 76 | ltmul2dd |  |-  ( ph -> ( ( C - B ) x. ( N x. ( A ^ ( N - 1 ) ) ) ) < ( ( C - B ) x. ( N x. ( B ^ ( N - 1 ) ) ) ) ) | 
						
							| 78 | 67 68 25 77 | ltdiv1dd |  |-  ( ph -> ( ( ( C - B ) x. ( N x. ( A ^ ( N - 1 ) ) ) ) / ( A ^ ( N - 1 ) ) ) < ( ( ( C - B ) x. ( N x. ( B ^ ( N - 1 ) ) ) ) / ( A ^ ( N - 1 ) ) ) ) | 
						
							| 79 | 65 78 | eqbrtrrd |  |-  ( ph -> ( ( C - B ) x. N ) < ( ( ( C - B ) x. ( N x. ( B ^ ( N - 1 ) ) ) ) / ( A ^ ( N - 1 ) ) ) ) | 
						
							| 80 | 9 31 44 54 79 | lelttrd |  |-  ( ph -> N < ( ( ( C - B ) x. ( N x. ( B ^ ( N - 1 ) ) ) ) / ( A ^ ( N - 1 ) ) ) ) | 
						
							| 81 | 80 43 | breqtrrd |  |-  ( ph -> N < ( ( ( C - B ) x. ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) ) | 
						
							| 82 | 3 | nnrpd |  |-  ( ph -> C e. RR+ ) | 
						
							| 83 | 74 82 15 48 | ltexp1dd |  |-  ( ph -> ( B ^ ( N - 1 ) ) < ( C ^ ( N - 1 ) ) ) | 
						
							| 84 | 19 17 20 83 | ltadd1dd |  |-  ( ph -> ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) < ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) | 
						
							| 85 | 28 21 72 84 | ltmul2dd |  |-  ( ph -> ( ( C - B ) x. ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) < ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) ) | 
						
							| 86 | 29 22 25 85 | ltdiv1dd |  |-  ( ph -> ( ( ( C - B ) x. ( ( B ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) < ( ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) ) | 
						
							| 87 | 9 30 26 81 86 | lttrd |  |-  ( ph -> N < ( ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) ) | 
						
							| 88 | 27 45 | reexpcld |  |-  ( ph -> ( A ^ N ) e. RR ) | 
						
							| 89 | 1 2 3 4 5 | fltnltalem |  |-  ( ph -> ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) < ( A ^ N ) ) | 
						
							| 90 | 22 88 25 89 | ltdiv1dd |  |-  ( ph -> ( ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) < ( ( A ^ N ) / ( A ^ ( N - 1 ) ) ) ) | 
						
							| 91 | 36 32 | nncand |  |-  ( ph -> ( N - ( N - 1 ) ) = 1 ) | 
						
							| 92 | 91 | oveq2d |  |-  ( ph -> ( A ^ ( N - ( N - 1 ) ) ) = ( A ^ 1 ) ) | 
						
							| 93 | 8 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 94 | 61 62 24 93 | expsubd |  |-  ( ph -> ( A ^ ( N - ( N - 1 ) ) ) = ( ( A ^ N ) / ( A ^ ( N - 1 ) ) ) ) | 
						
							| 95 | 61 | exp1d |  |-  ( ph -> ( A ^ 1 ) = A ) | 
						
							| 96 | 92 94 95 | 3eqtr3d |  |-  ( ph -> ( ( A ^ N ) / ( A ^ ( N - 1 ) ) ) = A ) | 
						
							| 97 | 90 96 | breqtrd |  |-  ( ph -> ( ( ( C - B ) x. ( ( C ^ ( N - 1 ) ) + ( ( N - 1 ) x. ( B ^ ( N - 1 ) ) ) ) ) / ( A ^ ( N - 1 ) ) ) < A ) | 
						
							| 98 | 9 26 27 87 97 | lttrd |  |-  ( ph -> N < A ) |