Step |
Hyp |
Ref |
Expression |
1 |
|
leidd.1 |
|- ( ph -> A e. RR ) |
2 |
|
ltnegd.2 |
|- ( ph -> B e. RR ) |
3 |
|
ltadd1d.3 |
|- ( ph -> C e. RR ) |
4 |
|
lesub3d.x |
|- ( ph -> X e. RR ) |
5 |
|
lesub3d.g |
|- ( ph -> ( X + C ) <_ A ) |
6 |
|
lesub3d.l |
|- ( ph -> B <_ X ) |
7 |
3 2
|
readdcld |
|- ( ph -> ( C + B ) e. RR ) |
8 |
4 3
|
readdcld |
|- ( ph -> ( X + C ) e. RR ) |
9 |
3
|
recnd |
|- ( ph -> C e. CC ) |
10 |
2
|
recnd |
|- ( ph -> B e. CC ) |
11 |
9 10
|
addcomd |
|- ( ph -> ( C + B ) = ( B + C ) ) |
12 |
2 4 3 6
|
leadd1dd |
|- ( ph -> ( B + C ) <_ ( X + C ) ) |
13 |
11 12
|
eqbrtrd |
|- ( ph -> ( C + B ) <_ ( X + C ) ) |
14 |
7 8 1 13 5
|
letrd |
|- ( ph -> ( C + B ) <_ A ) |
15 |
|
leaddsub |
|- ( ( C e. RR /\ B e. RR /\ A e. RR ) -> ( ( C + B ) <_ A <-> C <_ ( A - B ) ) ) |
16 |
3 2 1 15
|
syl3anc |
|- ( ph -> ( ( C + B ) <_ A <-> C <_ ( A - B ) ) ) |
17 |
14 16
|
mpbid |
|- ( ph -> C <_ ( A - B ) ) |