| Step |
Hyp |
Ref |
Expression |
| 1 |
|
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
ltadd1d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
lesub3d.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 5 |
|
lesub3d.g |
⊢ ( 𝜑 → ( 𝑋 + 𝐶 ) ≤ 𝐴 ) |
| 6 |
|
lesub3d.l |
⊢ ( 𝜑 → 𝐵 ≤ 𝑋 ) |
| 7 |
3 2
|
readdcld |
⊢ ( 𝜑 → ( 𝐶 + 𝐵 ) ∈ ℝ ) |
| 8 |
4 3
|
readdcld |
⊢ ( 𝜑 → ( 𝑋 + 𝐶 ) ∈ ℝ ) |
| 9 |
3
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 10 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 11 |
9 10
|
addcomd |
⊢ ( 𝜑 → ( 𝐶 + 𝐵 ) = ( 𝐵 + 𝐶 ) ) |
| 12 |
2 4 3 6
|
leadd1dd |
⊢ ( 𝜑 → ( 𝐵 + 𝐶 ) ≤ ( 𝑋 + 𝐶 ) ) |
| 13 |
11 12
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝐶 + 𝐵 ) ≤ ( 𝑋 + 𝐶 ) ) |
| 14 |
7 8 1 13 5
|
letrd |
⊢ ( 𝜑 → ( 𝐶 + 𝐵 ) ≤ 𝐴 ) |
| 15 |
|
leaddsub |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐶 + 𝐵 ) ≤ 𝐴 ↔ 𝐶 ≤ ( 𝐴 − 𝐵 ) ) ) |
| 16 |
3 2 1 15
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐵 ) ≤ 𝐴 ↔ 𝐶 ≤ ( 𝐴 − 𝐵 ) ) ) |
| 17 |
14 16
|
mpbid |
⊢ ( 𝜑 → 𝐶 ≤ ( 𝐴 − 𝐵 ) ) |