Metamath Proof Explorer


Theorem lesub3d

Description: The result of subtracting a number less than or equal to an intermediate number from a number greater than or equal to a third number increased by the intermediate number is greater than or equal to the third number. (Contributed by AV, 13-Aug-2020)

Ref Expression
Hypotheses leidd.1 ( 𝜑𝐴 ∈ ℝ )
ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
ltadd1d.3 ( 𝜑𝐶 ∈ ℝ )
lesub3d.x ( 𝜑𝑋 ∈ ℝ )
lesub3d.g ( 𝜑 → ( 𝑋 + 𝐶 ) ≤ 𝐴 )
lesub3d.l ( 𝜑𝐵𝑋 )
Assertion lesub3d ( 𝜑𝐶 ≤ ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 leidd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
3 ltadd1d.3 ( 𝜑𝐶 ∈ ℝ )
4 lesub3d.x ( 𝜑𝑋 ∈ ℝ )
5 lesub3d.g ( 𝜑 → ( 𝑋 + 𝐶 ) ≤ 𝐴 )
6 lesub3d.l ( 𝜑𝐵𝑋 )
7 3 2 readdcld ( 𝜑 → ( 𝐶 + 𝐵 ) ∈ ℝ )
8 4 3 readdcld ( 𝜑 → ( 𝑋 + 𝐶 ) ∈ ℝ )
9 3 recnd ( 𝜑𝐶 ∈ ℂ )
10 2 recnd ( 𝜑𝐵 ∈ ℂ )
11 9 10 addcomd ( 𝜑 → ( 𝐶 + 𝐵 ) = ( 𝐵 + 𝐶 ) )
12 2 4 3 6 leadd1dd ( 𝜑 → ( 𝐵 + 𝐶 ) ≤ ( 𝑋 + 𝐶 ) )
13 11 12 eqbrtrd ( 𝜑 → ( 𝐶 + 𝐵 ) ≤ ( 𝑋 + 𝐶 ) )
14 7 8 1 13 5 letrd ( 𝜑 → ( 𝐶 + 𝐵 ) ≤ 𝐴 )
15 leaddsub ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐶 + 𝐵 ) ≤ 𝐴𝐶 ≤ ( 𝐴𝐵 ) ) )
16 3 2 1 15 syl3anc ( 𝜑 → ( ( 𝐶 + 𝐵 ) ≤ 𝐴𝐶 ≤ ( 𝐴𝐵 ) ) )
17 14 16 mpbid ( 𝜑𝐶 ≤ ( 𝐴𝐵 ) )