Metamath Proof Explorer


Theorem lesub3d

Description: The result of subtracting a number less than or equal to an intermediate number from a number greater than or equal to a third number increased by the intermediate number is greater than or equal to the third number. (Contributed by AV, 13-Aug-2020)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
ltadd1d.3 φ C
lesub3d.x φ X
lesub3d.g φ X + C A
lesub3d.l φ B X
Assertion lesub3d φ C A B

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 ltadd1d.3 φ C
4 lesub3d.x φ X
5 lesub3d.g φ X + C A
6 lesub3d.l φ B X
7 3 2 readdcld φ C + B
8 4 3 readdcld φ X + C
9 3 recnd φ C
10 2 recnd φ B
11 9 10 addcomd φ C + B = B + C
12 2 4 3 6 leadd1dd φ B + C X + C
13 11 12 eqbrtrd φ C + B X + C
14 7 8 1 13 5 letrd φ C + B A
15 leaddsub C B A C + B A C A B
16 3 2 1 15 syl3anc φ C + B A C A B
17 14 16 mpbid φ C A B