Metamath Proof Explorer


Theorem lesub3d

Description: The result of subtracting a number less than or equal to an intermediate number from a number greater than or equal to a third number increased by the intermediate number is greater than or equal to the third number. (Contributed by AV, 13-Aug-2020)

Ref Expression
Hypotheses leidd.1 φA
ltnegd.2 φB
ltadd1d.3 φC
lesub3d.x φX
lesub3d.g φX+CA
lesub3d.l φBX
Assertion lesub3d φCAB

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 ltnegd.2 φB
3 ltadd1d.3 φC
4 lesub3d.x φX
5 lesub3d.g φX+CA
6 lesub3d.l φBX
7 3 2 readdcld φC+B
8 4 3 readdcld φX+C
9 3 recnd φC
10 2 recnd φB
11 9 10 addcomd φC+B=B+C
12 2 4 3 6 leadd1dd φB+CX+C
13 11 12 eqbrtrd φC+BX+C
14 7 8 1 13 5 letrd φC+BA
15 leaddsub CBAC+BACAB
16 3 2 1 15 syl3anc φC+BACAB
17 14 16 mpbid φCAB