Metamath Proof Explorer


Theorem fnetg

Description: A finer cover generates a topology finer than the original set. (Contributed by Mario Carneiro, 11-Sep-2015)

Ref Expression
Assertion fnetg ( 𝐴 Fne 𝐵𝐴 ⊆ ( topGen ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eqid 𝐴 = 𝐴
2 eqid 𝐵 = 𝐵
3 1 2 isfne4 ( 𝐴 Fne 𝐵 ↔ ( 𝐴 = 𝐵𝐴 ⊆ ( topGen ‘ 𝐵 ) ) )
4 3 simprbi ( 𝐴 Fne 𝐵𝐴 ⊆ ( topGen ‘ 𝐵 ) )