Metamath Proof Explorer


Theorem fnetg

Description: A finer cover generates a topology finer than the original set. (Contributed by Mario Carneiro, 11-Sep-2015)

Ref Expression
Assertion fnetg A Fne B A topGen B

Proof

Step Hyp Ref Expression
1 eqid A = A
2 eqid B = B
3 1 2 isfne4 A Fne B A = B A topGen B
4 3 simprbi A Fne B A topGen B