| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 2 |
1
|
ineq1d |
⊢ ( 𝐹 Fn 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ∩ I ) = ( 𝐹 ∩ I ) ) |
| 3 |
|
inres |
⊢ ( I ∩ ( 𝐹 ↾ 𝐴 ) ) = ( ( I ∩ 𝐹 ) ↾ 𝐴 ) |
| 4 |
|
incom |
⊢ ( I ∩ 𝐹 ) = ( 𝐹 ∩ I ) |
| 5 |
4
|
reseq1i |
⊢ ( ( I ∩ 𝐹 ) ↾ 𝐴 ) = ( ( 𝐹 ∩ I ) ↾ 𝐴 ) |
| 6 |
3 5
|
eqtri |
⊢ ( I ∩ ( 𝐹 ↾ 𝐴 ) ) = ( ( 𝐹 ∩ I ) ↾ 𝐴 ) |
| 7 |
|
incom |
⊢ ( ( 𝐹 ↾ 𝐴 ) ∩ I ) = ( I ∩ ( 𝐹 ↾ 𝐴 ) ) |
| 8 |
|
inres |
⊢ ( 𝐹 ∩ ( I ↾ 𝐴 ) ) = ( ( 𝐹 ∩ I ) ↾ 𝐴 ) |
| 9 |
6 7 8
|
3eqtr4i |
⊢ ( ( 𝐹 ↾ 𝐴 ) ∩ I ) = ( 𝐹 ∩ ( I ↾ 𝐴 ) ) |
| 10 |
2 9
|
eqtr3di |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ∩ I ) = ( 𝐹 ∩ ( I ↾ 𝐴 ) ) ) |
| 11 |
10
|
dmeqd |
⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∩ I ) = dom ( 𝐹 ∩ ( I ↾ 𝐴 ) ) ) |
| 12 |
|
fnresi |
⊢ ( I ↾ 𝐴 ) Fn 𝐴 |
| 13 |
|
fndmin |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ) → dom ( 𝐹 ∩ ( I ↾ 𝐴 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } ) |
| 14 |
12 13
|
mpan2 |
⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∩ ( I ↾ 𝐴 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } ) |
| 15 |
|
fvresi |
⊢ ( 𝑥 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) |
| 16 |
15
|
eqeq2d |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
| 17 |
16
|
rabbiia |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑥 } |
| 18 |
17
|
a1i |
⊢ ( 𝐹 Fn 𝐴 → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑥 } ) |
| 19 |
11 14 18
|
3eqtrd |
⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∩ I ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑥 } ) |