Description: Property of a fixed point of a function. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnelfp | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fninfp | ⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∩ I ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑥 } ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑋 ∈ dom ( 𝐹 ∩ I ) ↔ 𝑋 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑥 } ) ) |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 4 | id | ⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) | |
| 5 | 3 4 | eqeq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ↔ ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) |
| 6 | 5 | elrab3 | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝑋 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑥 } ↔ ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) |
| 7 | 2 6 | sylan9bb | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) |