Metamath Proof Explorer


Theorem fnelfp

Description: Property of a fixed point of a function. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion fnelfp
|- ( ( F Fn A /\ X e. A ) -> ( X e. dom ( F i^i _I ) <-> ( F ` X ) = X ) )

Proof

Step Hyp Ref Expression
1 fninfp
 |-  ( F Fn A -> dom ( F i^i _I ) = { x e. A | ( F ` x ) = x } )
2 1 eleq2d
 |-  ( F Fn A -> ( X e. dom ( F i^i _I ) <-> X e. { x e. A | ( F ` x ) = x } ) )
3 fveq2
 |-  ( x = X -> ( F ` x ) = ( F ` X ) )
4 id
 |-  ( x = X -> x = X )
5 3 4 eqeq12d
 |-  ( x = X -> ( ( F ` x ) = x <-> ( F ` X ) = X ) )
6 5 elrab3
 |-  ( X e. A -> ( X e. { x e. A | ( F ` x ) = x } <-> ( F ` X ) = X ) )
7 2 6 sylan9bb
 |-  ( ( F Fn A /\ X e. A ) -> ( X e. dom ( F i^i _I ) <-> ( F ` X ) = X ) )