Description: Property of a fixed point of a function. (Contributed by Stefan O'Rear, 1-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fnelfp | |- ( ( F Fn A /\ X e. A ) -> ( X e. dom ( F i^i _I ) <-> ( F ` X ) = X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fninfp | |- ( F Fn A -> dom ( F i^i _I ) = { x e. A | ( F ` x ) = x } ) |
|
2 | 1 | eleq2d | |- ( F Fn A -> ( X e. dom ( F i^i _I ) <-> X e. { x e. A | ( F ` x ) = x } ) ) |
3 | fveq2 | |- ( x = X -> ( F ` x ) = ( F ` X ) ) |
|
4 | id | |- ( x = X -> x = X ) |
|
5 | 3 4 | eqeq12d | |- ( x = X -> ( ( F ` x ) = x <-> ( F ` X ) = X ) ) |
6 | 5 | elrab3 | |- ( X e. A -> ( X e. { x e. A | ( F ` x ) = x } <-> ( F ` X ) = X ) ) |
7 | 2 6 | sylan9bb | |- ( ( F Fn A /\ X e. A ) -> ( X e. dom ( F i^i _I ) <-> ( F ` X ) = X ) ) |