Metamath Proof Explorer


Theorem foun

Description: The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016)

Ref Expression
Assertion foun ( ( ( 𝐹 : 𝐴onto𝐵𝐺 : 𝐶onto𝐷 ) ∧ ( 𝐴𝐶 ) = ∅ ) → ( 𝐹𝐺 ) : ( 𝐴𝐶 ) –onto→ ( 𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 fofn ( 𝐹 : 𝐴onto𝐵𝐹 Fn 𝐴 )
2 fofn ( 𝐺 : 𝐶onto𝐷𝐺 Fn 𝐶 )
3 1 2 anim12i ( ( 𝐹 : 𝐴onto𝐵𝐺 : 𝐶onto𝐷 ) → ( 𝐹 Fn 𝐴𝐺 Fn 𝐶 ) )
4 fnun ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐶 ) ∧ ( 𝐴𝐶 ) = ∅ ) → ( 𝐹𝐺 ) Fn ( 𝐴𝐶 ) )
5 3 4 sylan ( ( ( 𝐹 : 𝐴onto𝐵𝐺 : 𝐶onto𝐷 ) ∧ ( 𝐴𝐶 ) = ∅ ) → ( 𝐹𝐺 ) Fn ( 𝐴𝐶 ) )
6 rnun ran ( 𝐹𝐺 ) = ( ran 𝐹 ∪ ran 𝐺 )
7 forn ( 𝐹 : 𝐴onto𝐵 → ran 𝐹 = 𝐵 )
8 7 ad2antrr ( ( ( 𝐹 : 𝐴onto𝐵𝐺 : 𝐶onto𝐷 ) ∧ ( 𝐴𝐶 ) = ∅ ) → ran 𝐹 = 𝐵 )
9 forn ( 𝐺 : 𝐶onto𝐷 → ran 𝐺 = 𝐷 )
10 9 ad2antlr ( ( ( 𝐹 : 𝐴onto𝐵𝐺 : 𝐶onto𝐷 ) ∧ ( 𝐴𝐶 ) = ∅ ) → ran 𝐺 = 𝐷 )
11 8 10 uneq12d ( ( ( 𝐹 : 𝐴onto𝐵𝐺 : 𝐶onto𝐷 ) ∧ ( 𝐴𝐶 ) = ∅ ) → ( ran 𝐹 ∪ ran 𝐺 ) = ( 𝐵𝐷 ) )
12 6 11 syl5eq ( ( ( 𝐹 : 𝐴onto𝐵𝐺 : 𝐶onto𝐷 ) ∧ ( 𝐴𝐶 ) = ∅ ) → ran ( 𝐹𝐺 ) = ( 𝐵𝐷 ) )
13 df-fo ( ( 𝐹𝐺 ) : ( 𝐴𝐶 ) –onto→ ( 𝐵𝐷 ) ↔ ( ( 𝐹𝐺 ) Fn ( 𝐴𝐶 ) ∧ ran ( 𝐹𝐺 ) = ( 𝐵𝐷 ) ) )
14 5 12 13 sylanbrc ( ( ( 𝐹 : 𝐴onto𝐵𝐺 : 𝐶onto𝐷 ) ∧ ( 𝐴𝐶 ) = ∅ ) → ( 𝐹𝐺 ) : ( 𝐴𝐶 ) –onto→ ( 𝐵𝐷 ) )