Metamath Proof Explorer


Theorem frege40

Description: Anything implies pm2.18 . Proposition 40 of Frege1879 p. 46. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege40 ( ¬ 𝜑 → ( ( ¬ 𝜓𝜓 ) → 𝜓 ) )

Proof

Step Hyp Ref Expression
1 frege39 ( ( ¬ 𝜓𝜓 ) → ( ¬ 𝜓𝜑 ) )
2 frege35 ( ( ( ¬ 𝜓𝜓 ) → ( ¬ 𝜓𝜑 ) ) → ( ¬ 𝜑 → ( ( ¬ 𝜓𝜓 ) → 𝜓 ) ) )
3 1 2 ax-mp ( ¬ 𝜑 → ( ( ¬ 𝜓𝜓 ) → 𝜓 ) )